版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年山東濰坊實(shí)驗(yàn)中學(xué)高三下學(xué)期高考等值卷(二模)數(shù)學(xué)試題試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個超級斐波那契數(shù)列是一列具有以下性質(zhì)的正整數(shù):從第三項起,每一項都等于前面所有項之和(例如:1,3,4,8,16…).則首項為2,某一項為2020的超級斐波那契數(shù)列的個數(shù)為()A.3 B.4 C.5 D.62.已知點(diǎn)P在橢圓τ:=1(a>b>0)上,點(diǎn)P在第一象限,點(diǎn)P關(guān)于原點(diǎn)O的對稱點(diǎn)為A,點(diǎn)P關(guān)于x軸的對稱點(diǎn)為Q,設(shè),直線AD與橢圓τ的另一個交點(diǎn)為B,若PA⊥PB,則橢圓τ的離心率e=()A. B. C. D.3.在原點(diǎn)附近的部分圖象大概是()A. B.C. D.4.已知為虛數(shù)單位,實(shí)數(shù)滿足,則()A.1 B. C. D.5.已知函數(shù),若則()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)6.已知函數(shù),.若存在,使得成立,則的最大值為()A. B.C. D.7.在中,,分別為,的中點(diǎn),為上的任一點(diǎn),實(shí)數(shù),滿足,設(shè)、、、的面積分別為、、、,記(),則取到最大值時,的值為()A.-1 B.1 C. D.8.已知實(shí)數(shù)滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.119.中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數(shù)”,數(shù)學(xué).某校國學(xué)社團(tuán)開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰,則“六藝”課程講座不同的排課順序共有()種.A.408 B.120 C.156 D.24010.設(shè)雙曲線(a>0,b>0)的一個焦點(diǎn)為F(c,0)(c>0),且離心率等于,若該雙曲線的一條漸近線被圓x2+y2﹣2cx=0截得的弦長為2,則該雙曲線的標(biāo)準(zhǔn)方程為()A. B.C. D.11.如圖網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某幾何體的三視圖,則該幾何體的所有棱中最長棱的長度為()A. B. C. D.12.若直線與圓相交所得弦長為,則()A.1 B.2 C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.《九章算術(shù)》卷5《商功》記載一個問題“今有圓堡瑽,周四丈八尺,高一丈一尺.問積幾何?答曰:二千一百一十二尺,術(shù)曰:周自相乘,以高乘之,十二而一”,這里所說的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一”,就是說:圓堡瑽(圓柱體)的體積為(底面圓的周長的平方高),則由此可推得圓周率的取值為________.14.已知、為正實(shí)數(shù),直線截圓所得的弦長為,則的最小值為__________.15.函數(shù)在的零點(diǎn)個數(shù)為________.16.已知數(shù)列的前項和為,,且滿足,則數(shù)列的前10項的和為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知關(guān)于的不等式有解.(1)求實(shí)數(shù)的最大值;(2)若,,均為正實(shí)數(shù),且滿足.證明:.18.(12分)在平面直角坐標(biāo)系中,點(diǎn)是直線上的動點(diǎn),為定點(diǎn),點(diǎn)為的中點(diǎn),動點(diǎn)滿足,且,設(shè)點(diǎn)的軌跡為曲線.(1)求曲線的方程;(2)過點(diǎn)的直線交曲線于,兩點(diǎn),為曲線上異于,的任意一點(diǎn),直線,分別交直線于,兩點(diǎn).問是否為定值?若是,求的值;若不是,請說明理由.19.(12分)在最新公布的湖南新高考方案中,“”模式要求學(xué)生在語數(shù)外3門全國統(tǒng)考科目之外,在歷史和物理2門科目中必選且只選1門,再從化學(xué)、生物、地理、政治4門科目中任選2門,后三科的高考成績按新的規(guī)則轉(zhuǎn)換后計入高考總分.相應(yīng)地,高校在招生時可對特定專業(yè)設(shè)置具體的選修科目要求.雙超中學(xué)高一年級有學(xué)生1200人,現(xiàn)從中隨機(jī)抽取40人進(jìn)行選科情況調(diào)查,用數(shù)字1~6分別依次代表歷史、物理、化學(xué)、生物、地理、政治6科,得到如下的統(tǒng)計表:序號選科情況序號選科情況序號選科情況序號選科情況11341123621156312352235122342223532236323513145232453323541451413524235341355156152362525635156624516236261563623672561715627134371568235182362823538134923519145292463923510236202353015640245(1)雙超中學(xué)規(guī)定:每個選修班最多編排50人且盡量滿額編班,每位老師執(zhí)教2個選修班(當(dāng)且僅當(dāng)一門科目的選課班級總數(shù)為奇數(shù)時,允許這門科目的1位老師只教1個班).已知雙超中學(xué)高一年級現(xiàn)有化學(xué)、生物科目教師每科各8人,用樣本估計總體,則化學(xué)、生物兩科的教師人數(shù)是否需要調(diào)整?如果需要調(diào)整,各需增加或減少多少人?(2)請創(chuàng)建列聯(lián)表,運(yùn)用獨(dú)立性檢驗(yàn)的知識進(jìn)行分析,探究是否有的把握判斷學(xué)生“選擇化學(xué)科目”與“選擇物理科目”有關(guān).附:0.1000.0500.0100.0012.7063.8416.63510.828(3)某高校在其熱門人文專業(yè)的招生簡章中明確要求,僅允許選修了歷史科目,且在政治和地理2門中至少選修了1門的考生報名.現(xiàn)從雙超中學(xué)高一新生中隨機(jī)抽取3人,設(shè)具備高校專業(yè)報名資格的人數(shù)為,用樣本的頻率估計概率,求的分布列與期望.20.(12分)在平面直角坐標(biāo)系中,,,且滿足(1)求點(diǎn)的軌跡的方程;(2)過,作直線交軌跡于,兩點(diǎn),若的面積是面積的2倍,求直線的方程.21.(12分)在直角坐標(biāo)系中,已知圓,以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知直線平分圓M的周長.(1)求圓M的半徑和圓M的極坐標(biāo)方程;(2)過原點(diǎn)作兩條互相垂直的直線,其中與圓M交于O,A兩點(diǎn),與圓M交于O,B兩點(diǎn),求面積的最大值.22.(10分)已知函數(shù),直線是曲線在處的切線.(1)求證:無論實(shí)數(shù)取何值,直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);(2)若直線經(jīng)過點(diǎn),試判斷函數(shù)的零點(diǎn)個數(shù)并證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據(jù)定義,表示出數(shù)列的通項并等于2020.結(jié)合的正整數(shù)性質(zhì)即可確定解的個數(shù).【詳解】由題意可知首項為2,設(shè)第二項為,則第三項為,第四項為,第五項為第n項為且,則,因?yàn)?,?dāng)?shù)闹悼梢詾椋患从?個這種超級斐波那契數(shù)列,故選:A.【點(diǎn)睛】本題考查了數(shù)列新定義的應(yīng)用,注意自變量的取值范圍,對題意理解要準(zhǔn)確,屬于中檔題.2.C【解析】
設(shè),則,,,設(shè),根據(jù)化簡得到,得到答案.【詳解】設(shè),則,,,則,設(shè),則,兩式相減得到:,,,即,,,故,即,故,故.故選:.【點(diǎn)睛】本題考查了橢圓的離心率,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.3.A【解析】
分析函數(shù)的奇偶性,以及該函數(shù)在區(qū)間上的函數(shù)值符號,結(jié)合排除法可得出正確選項.【詳解】令,可得,即函數(shù)的定義域?yàn)椋x域關(guān)于原點(diǎn)對稱,,則函數(shù)為奇函數(shù),排除C、D選項;當(dāng)時,,,則,排除B選項.故選:A.【點(diǎn)睛】本題考查利用函數(shù)解析式選擇函數(shù)圖象,一般要分析函數(shù)的定義域、奇偶性、單調(diào)性、零點(diǎn)以及函數(shù)值符號,考查分析問題和解決問題的能力,屬于中等題.4.D【解析】,則故選D.5.C【解析】
利用導(dǎo)數(shù)求得在上遞增,結(jié)合與圖象,判斷出的大小關(guān)系,由此比較出的大小關(guān)系.【詳解】因?yàn)?,所以在上單調(diào)遞增;在同一坐標(biāo)系中作與圖象,,可得,故.故選:C【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查利用函數(shù)的單調(diào)性比較大小,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.6.C【解析】
由題意可知,,由可得出,,利用導(dǎo)數(shù)可得出函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,進(jìn)而可得出,由此可得出,可得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)在上的最大值即可得解.【詳解】,,由于,則,同理可知,,函數(shù)的定義域?yàn)椋瑢愠闪?,所以,函?shù)在區(qū)間上單調(diào)遞增,同理可知,函數(shù)在區(qū)間上單調(diào)遞增,,則,,則,構(gòu)造函數(shù),其中,則.當(dāng)時,,此時函數(shù)單調(diào)遞增;當(dāng)時,,此時函數(shù)單調(diào)遞減.所以,.故選:C.【點(diǎn)睛】本題考查代數(shù)式最值的計算,涉及指對同構(gòu)思想的應(yīng)用,考查化歸與轉(zhuǎn)化思想的應(yīng)用,有一定的難度.7.D【解析】
根據(jù)三角形中位線的性質(zhì),可得到的距離等于△的邊上高的一半,從而得到,由此結(jié)合基本不等式求最值,得到當(dāng)取到最大值時,為的中點(diǎn),再由平行四邊形法則得出,根據(jù)平面向量基本定理可求得,從而可求得結(jié)果.【詳解】如圖所示:因?yàn)槭恰鞯闹形痪€,所以到的距離等于△的邊上高的一半,所以,由此可得,當(dāng)且僅當(dāng)時,即為的中點(diǎn)時,等號成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據(jù)平面向量基本定理可得,從而.故選:D【點(diǎn)睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應(yīng)用,考查了基本不等式求最值,屬于中檔題.8.A【解析】
根據(jù)約束條件畫出可行域,再將目標(biāo)函數(shù)化成斜截式,找到截距的最小值.【詳解】由約束條件,畫出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時候?yàn)檫^點(diǎn)的時候,解得所以,此時故選A項【點(diǎn)睛】本題考查線性規(guī)劃求一次相加的目標(biāo)函數(shù),屬于常規(guī)題型,是簡單題.9.A【解析】
利用間接法求解,首先對6門課程全排列,減去“樂”排在第一節(jié)的情況,再減去“射”和“御”兩門課程相鄰的情況,最后還需加上“樂”排在第一節(jié),且“射”和“御”兩門課程相鄰的情況;【詳解】解:根據(jù)題意,首先不做任何考慮直接全排列則有(種),當(dāng)“樂”排在第一節(jié)有(種),當(dāng)“射”和“御”兩門課程相鄰時有(種),當(dāng)“樂”排在第一節(jié),且“射”和“御”兩門課程相鄰時有(種),則滿足“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰的排法有(種),故選:.【點(diǎn)睛】本題考查排列、組合的應(yīng)用,注意“樂”的排列對“射”和“御”兩門課程相鄰的影響,屬于中檔題.10.C【解析】
由題得,,又,聯(lián)立解方程組即可得,,進(jìn)而得出雙曲線方程.【詳解】由題得①又該雙曲線的一條漸近線方程為,且被圓x2+y2﹣2cx=0截得的弦長為2,所以②又③由①②③可得:,,所以雙曲線的標(biāo)準(zhǔn)方程為.故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡單幾何性質(zhì),圓的方程的有關(guān)計算,考查了學(xué)生的計算能力.11.C【解析】
利用正方體將三視圖還原,觀察可得最長棱為AD,算出長度.【詳解】幾何體的直觀圖如圖所示,易得最長的棱長為故選:C.【點(diǎn)睛】本題考查了三視圖還原幾何體的問題,其中利用正方體作襯托是關(guān)鍵,屬于基礎(chǔ)題.12.A【解析】
將圓的方程化簡成標(biāo)準(zhǔn)方程,再根據(jù)垂徑定理求解即可.【詳解】圓的標(biāo)準(zhǔn)方程,圓心坐標(biāo)為,半徑為,因?yàn)橹本€與圓相交所得弦長為,所以直線過圓心,得,即.故選:A【點(diǎn)睛】本題考查了根據(jù)垂徑定理求解直線中參數(shù)的方法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.3【解析】
根據(jù)圓堡瑽(圓柱體)的體積為(底面圓的周長的平方高),可得,進(jìn)而可求出的值【詳解】解:設(shè)圓柱底面圓的半徑為,圓柱的高為,由題意知,解得.故答案為:3.【點(diǎn)睛】本題主要考查了圓柱的體積公式.只要能看懂題目意思,結(jié)合方程的思想即可求出結(jié)果.14.【解析】
先根據(jù)弦長,半徑,弦心距之間的關(guān)系列式求得,代入整理得,利用基本不等式求得最值.【詳解】解:圓的圓心為,則到直線的距離為,由直線截圓所得的弦長為可得,整理得,解得或(舍去),令,又,當(dāng)且僅當(dāng)時,等號成立,則.故答案為:.【點(diǎn)睛】本題考查直線和圓的位置關(guān)系,考核基本不等式求最值,關(guān)鍵是對目標(biāo)式進(jìn)行變形,變成能用基本不等式求最值的形式,也可用換元法進(jìn)行變形,是中檔題.15.【解析】
求出的范圍,再由函數(shù)值為零,得到的取值可得零點(diǎn)個數(shù).【詳解】詳解:由題可知,或解得,或故有3個零點(diǎn).【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)和函數(shù)的零點(diǎn),屬于基礎(chǔ)題.16.1【解析】
由得時,,兩式作差,可求得數(shù)列的通項公式,進(jìn)一步求出數(shù)列的和.【詳解】解:數(shù)列的前項和為,,且滿足,①當(dāng)時,,②①-②得:,整理得:(常數(shù)),故數(shù)列是以為首項,2為公比的等比數(shù)列,所以(首項不符合通項),故,所以:,故答案為:1.【點(diǎn)睛】本題主要考查數(shù)列的通項公式的求法及應(yīng)用,數(shù)列的前項和的公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)見解析【解析】
(1)由題意,只需找到的最大值即可;(2),構(gòu)造并利用基本不等式可得,即.【詳解】(1),∴的最大值為4.關(guān)于的不等式有解等價于,(ⅰ)當(dāng)時,上述不等式轉(zhuǎn)化為,解得,(ⅱ)當(dāng)時,上述不等式轉(zhuǎn)化為,解得,綜上所述,實(shí)數(shù)的取值范圍為,則實(shí)數(shù)的最大值為3,即.(2)證明:根據(jù)(1)求解知,所以,又∵,,,,,當(dāng)且僅當(dāng)時,等號成立,即,∴,所以,.【點(diǎn)睛】本題考查絕對值不等式中的能成立問題以及綜合法證明不等式問題,是一道中檔題.18.(1);(2)是定值,.【解析】
(1)設(shè)出M的坐標(biāo)為,采用直接法求曲線的方程;(2)設(shè)AB的方程為,,,,求出AT方程,聯(lián)立直線方程得D點(diǎn)的坐標(biāo),同理可得E點(diǎn)的坐標(biāo),最后利用向量數(shù)量積算即可.【詳解】(1)設(shè)動點(diǎn)M的坐標(biāo)為,由知∥,又在直線上,所以P點(diǎn)坐標(biāo)為,又,點(diǎn)為的中點(diǎn),所以,,,由得,即;(2)設(shè)直線AB的方程為,代入得,設(shè),,則,,設(shè),則,所以AT的直線方程為即,令,則,所以D點(diǎn)的坐標(biāo)為,同理E點(diǎn)的坐標(biāo)為,于是,,所以,從而,所以是定值.【點(diǎn)睛】本題考查了直接法求拋物線的軌跡方程、直線與拋物線位置關(guān)系中的定值問題,在處理此類問題一般要涉及根與系數(shù)的關(guān)系,本題思路簡單,但計算量比較大,是一道有一定難度的題.19.(1)不需調(diào)整(2)列聯(lián)表見解析;有的把握判斷學(xué)生“選擇化學(xué)科目”與“選擇物理科目”有關(guān)(3)詳見解析【解析】
(1)可估計高一年級選修相應(yīng)科目的人數(shù)分別為120,2,推理得對應(yīng)開設(shè)選修班的數(shù)目分別為15,1.推理知生物科目需要減少4名教師,化學(xué)科目不需要調(diào)整.(2)根據(jù)列聯(lián)表計算觀測值,根據(jù)臨界值表可得結(jié)論.(3)經(jīng)統(tǒng)計,樣本中選修了歷史科目且在政治和地理2門中至少選修了一門的人數(shù)為12,頻率為.用頻率估計概率,則,根據(jù)二項分布概率公式可得分布列和數(shù)學(xué)期望.【詳解】(1)經(jīng)統(tǒng)計可知,樣本40人中,選修化學(xué)、生物的人數(shù)分別為24,11,則可估計高一年級選修相應(yīng)科目的人數(shù)分別為120,2.根據(jù)每個選修班最多編排50人,且盡量滿額編班,得對應(yīng)開設(shè)選修班的數(shù)目分別為15,1.現(xiàn)有化學(xué)、生物科目教師每科各8人,根據(jù)每位教師執(zhí)教2個選修班,當(dāng)且僅當(dāng)一門科目的選課班級總數(shù)為奇數(shù)時,允許這門科目的一位教師執(zhí)教一個班的條件,知生物科目需要減少4名教師,化學(xué)科目不需要調(diào)整.(2)根據(jù)表格中的數(shù)據(jù)進(jìn)行統(tǒng)計后,制作列聯(lián)表如下:選物理不選物理合計選化學(xué)19524不選化學(xué)61016合計251540則,有的把握判斷學(xué)生”選擇化學(xué)科目”與“選擇物理科目”有關(guān).(3)經(jīng)統(tǒng)計,樣本中選修了歷史科目且在政治和地理2門中至少選修了一門的人數(shù)為12,頻率為.用頻率估計概率,則,分布列如下:01230.3430.4410.1890.021數(shù)學(xué)期望為.【點(diǎn)睛】本題主要考
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 低空經(jīng)濟(jì)公司績效管理方案
- 高爐煉鐵工練習(xí)復(fù)習(xí)測試卷含答案
- 車駕管基礎(chǔ)知識復(fù)習(xí)試題附答案
- 林業(yè)基礎(chǔ)知識考試題庫單選題100道及答案解析
- 漢語語法體系
- 學(xué)校傳染病的預(yù)防、控制與管理課件
- 2024-2025學(xué)年專題7.1 力-八年級物理人教版(下冊)含答案
- 2024屆上海市嘉定區(qū)市級名校高三4月調(diào)研測試數(shù)學(xué)試題
- 第3章 與圓有關(guān)的計算 浙教版數(shù)學(xué)九年級上冊精講精練
- 體育與健康必修背越式跳高說課稿
- 2024年房產(chǎn)贈與合同范本(31篇)
- 2024年中國移動校園招聘高頻難、易錯點(diǎn)500題模擬試題附帶答案詳解
- 物理透鏡 課件 2024-2025學(xué)年蘇科版八年級上冊物理
- 【智慧醫(yī)療】醫(yī)療健康產(chǎn)業(yè)園概念策劃方案(XQ)
- 智能分揀與配送中心建設(shè)方案
- 人教版小學(xué)英語單詞表(完整版)
- 國家開放大學(xué)《心理健康教育》形考任務(wù)1-9參考答案
- 黑龍江省哈爾濱第三中學(xué)校2023-2024學(xué)年高一上學(xué)期入學(xué)調(diào)研測試英語試題
- 房地產(chǎn)投資基金設(shè)立及運(yùn)作
- 三清山旅游資源開發(fā)研究
- 爐蓋吊裝方案
評論
0/150
提交評論