會(huì)計(jì)數(shù)據(jù)分析 TestBank Richardson1e-Chapter03-TB_第1頁(yè)
會(huì)計(jì)數(shù)據(jù)分析 TestBank Richardson1e-Chapter03-TB_第2頁(yè)
會(huì)計(jì)數(shù)據(jù)分析 TestBank Richardson1e-Chapter03-TB_第3頁(yè)
會(huì)計(jì)數(shù)據(jù)分析 TestBank Richardson1e-Chapter03-TB_第4頁(yè)
會(huì)計(jì)數(shù)據(jù)分析 TestBank Richardson1e-Chapter03-TB_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Copyright2019?McGraw-HillEducation.Allrightsreserved.NoreproductionordistributionwithoutthepriorwrittenconsentofMcGraw-HillEducation.

DataAnalyticsforAccounting,1e(Richardson)

Chapter3ModelingandEvaluation:GoingfromDefiningBusinessProblemsandDataUnderstandingtoAnalyzingDataandAnsweringQuestions

1)Benford'sLawisanabsoluteandalldatamustconform.

2)Adecisiontreecanbeusedtodividedataintosmallergroups.

3)Datareductionisadataapproachusedtoreducetheamountofinformationthatneedstobeconsideredtofocusonthemostcriticalitems.

4)Regressionisadataapproachusedtoestimateorpredict,foreachunit,thenumericalvalueofsomevariableusingsometypeofstatisticalmodel.

5)Linkpredictionisadataapproachusedtoestimateorpredict,foreachunit,thenumericalvalueofsomevariableusingsometypeofstatisticalmodel.

6)Existingdatathathasbeenmanuallyevaluatedandassignedaclassisoftenreferredtoastestdata.

7)Co-occurrencegroupingcouldbeusedtomatchvendorsbygeographicregion.

8)Fuzzymatchingisadataapproachusedtoidentifysimilarindividualsbasedondataknownaboutthem.

9)Alibabaanditsattempttoidentifysellerandcustomerfraudbasedonvariouscharacteristicsknownaboutthemisanexampleofsimilaritymatching.

10)Fuzzymatchingisacomputer-assistedtechniqueoffindingmatchesthatarelessthan100percentperfectbyfindingcorrespondencesbetweenportionsofthetextofeachpotentialmatch.

11)ThePinIMPACTCyclerepresentsperformingtestplan.

12)Clusteringisadataapproachusedtodivideindividualsintogroupsinausefulormeaningfulway.

13)Anexampleofclassificationwouldbeacreditcardcompanyflaggingatransactionasbeingapprovedorpotentiallybeingfraudulentanddenyingpayment.

14)Thedataapproachusedtocharacterizethetypicalbehaviorofanindividual,grouporpopulationbygeneratingsummarystatisticsaboutthedataisreferredtoasclassification.

15)XBRLisaglobalstandardforexchangingfinancialreportinginformationthatusesXML.

16)XBRLisusedtofacilitatetheexchangeoffinancialreportinginformationbetweenthecompanyandtheSecuritiesandExchangeCommission.

17)Dataprofilingtypicallyinvolvesunstructureddata.

18)Atargetisamanuallyassignedcategoryappliedtoarecordbasedonanevent.

19)Whenconsideringaquestionsuchas"Doourcustomersformnaturalgroupsbasedonsimilarattributes?”youwoulduseanunsupervisedapproach.

20)Co-occurrencegroupingisanexampleofasupervisedapproach.

21)Allofthefollowingareexamplesofasupervisedapproachtoevaluationdataexcept:

A)Causalmodeling

B)Datareduction

C)Linkprediction

D)Regression

22)Allofthefollowingareexamplesofanunsupervisedapproachtoevaluationdataexcept:

A)Similaritymatching

B)Clustering

C)Profiling

D)Co-occurrencegrouping

23)Whichofthefollowingbestdescribesanunsupervisedapproachtotheevaluationofdata?

A)Dataexplorationthatisfreefromoversightbyasuperior

B)Dataexplorationthatexaminestherelationshipsbetweenvariablesthatarehypothesizedtoexist

C)Dataexplorationthatlooksforpotentialpatternsofinterest

D)Dataexplorationthatisconductedwithdirectoversightbyasuperior

24)Whichofthefollowingbestdescribesasupervisedapproachtotheevaluationofdata?

A)Dataexplorationthatisfreefromoversightbyasuperior

B)Dataexplorationthatisconductedwithdirectoversightbyasuperior

C)Dataexplorationthatexaminestherelationshipsbetweenvariablesthatarehypothesizedtoexist

D)Dataexplorationthatlooksforpotentialpatternsofinterest

25)Whichapproachtodataanalyticsattemptstoassigneachunitinapopulationintoasmallsetofcategories?

A)Classification

B)Regression

C)Similaritymatching

D)Co-occurrencegrouping

26)Whichapproachtodataanalyticsattemptstodivideindividualsintogroupsinausefulormeaningfulway?

A)Clustering

B)Datareduction

C)Similaritymatching

D)Co-occurrencegrouping

27)Whichapproachtodataanalyticsattemptstoidentifysimilarindividualsbasedondataknownaboutthem?

A)Classification

B)Clustering

C)Similaritymatching

D)Co-occurrencegrouping

28)Whichapproachtodataanalyticsattemptstodiscoverassociationsbetweenindividualsbasedontransactionsinvolvingthem?

A)Classification

B)Regression

C)Similaritymatching

D)Co-occurrencegrouping

29)Whichapproachtodataanalyticsattemptstoforecastarelationshipbetweentwodataitems?

A)Linkprediction

B)Regression

C)Similaritymatching

D)Co-occurrencegrouping

30)Whichapproachtodataanalyticsattemptstopredict,foreachunit,thenumericalvalueofsomevariable?

A)Classification

B)Regression

C)Similaritymatching

D)Linkprediction

31)Whichapproachtodataanalyticsattemptstocharacterizethetypicalbehaviorofanindividual,grouporpopulationbygeneratingsummarystatisticsaboutthedata?

A)Classification

B)Regression

C)Profiling

D)Linkprediction

32)________referstodatathatisstoredinadatabaseorspreadsheetthatisreadilysearchable.

A)Trainingdata

B)Unstructureddata

C)Structureddata

D)Testdata

33)Usingsocialmediatolookforrelationshipsbetweenrelatedpartiesthatarenototherwisedisclosedtoidentifyrelatedpartytransactionsisanexampleof________.

A)Classification

B)Regression

C)Profiling

D)Linkprediction

34)Dataprofilingisusedtoassessdataqualityandinternalcontrols.Ittypicallyinvolvesthefollowingstepsexcept:

A)Filtertheresults.

B)Identifytheobjectsoractivityyouwanttoprofile.

C)Determinethetypesofprofilingyouwanttoperform.

D)Setboundariesorthresholdsfortheactivity.

35)Regressionanalysistypicallyinvolvesthefollowingstepsexcept:

A)Identifythevariablesthatmightpredictanoutcome.

B)Identifytheparametersofthemodel.

C)Setboundariesorthresholds.

D)Determinethefunctionalformoftherelationship.

36)Datareductiontypicallyinvolvesthefollowingstepsexcept:

A)Identifytheattributeyouwouldliketoreduceorfocuson.

B)Identifytheparametersofthemodel.

C)Filtertheresults.

D)Interprettheresults.

37)Whenworkingwithapredictivemodel,underfittingthedataismostlikelycausedby________.

A)anoverlycomplexmodel

B)anoverlysimplemodel

C)overpruningthedata

D)alackofdatareduction

38)Ingeneral,themorecomplexthemodel,thegreaterthechanceof________.

A)Overfittingthedata

B)Underfittingthedata

C)Pruningthedata

D)Theneedtoreducetheamountofdataconsidered

39)Whileoverfittingdatacouldleadtoanerrorrateof0(zero),itisunlikelythatyouwouldbeableto________yourresults.

A)define

B)specify

C)articulate

D)generalize

40)Whichofthefollowingbestdescribesanindependentvariable?

A)Output

B)Input

C)Application

D)Operation

41)Whichofthefollowingbestdescribesadependentvariable?

A)Output

B)Input

C)Application

D)Operation

42)Understandingandpredictinginventoryobsolescenceisanimportantdeterminationforretailcompanies.Whenusingcompetitorsellingpricestoestimatetheinventoryobsolescencereserve,theinventoryobsolescencereserverepresentswhichofthefollowing?

A)Independentvariable

B)Dependentvariable

C)Function

D)StatisticalModel

43)Understandingandpredictingwarrantyexpenseisanimportantdeterminationformanufacturingfirms.Whenusinghistoricalclaimsdatatoestimatethecurrentperiod'swarrantyexpense,thehistoricalclaimsdatarepresentswhichofthefollowing?

A)Independentvariable

B)Dependentvariable

C)Function

D)StatisticalModel

44)Oneofthekeytasksofbankauditorsistoconsidertheamountoftheloanlossreserve.Whendevelopingamodeltoestimatethecurrentyear'sloanlossreserveamount,whichofthefollowingwouldbeleastlikelytobeincludedasanindependentvariable?

A)Originalloanapprovalamount

B)Customerloanhistory

C)Currentagedloans

D)Collectionssuccess

45)Theshortsurveysregardingdiningpreferencesrequestedatthebottomoftherestaurantbillareanexampleofwhichdataapproach?

A)Clustering

B)Regression

C)Similaritymatching

D)Linkprediction

46)Retailstoresoftenrequestcustomers'zipcodesattheendofasalestransaction.Thisisanexampleofwhichdataapproach?

A)Clustering

B)Regression

C)Similaritymatching

D)Classification

47)

________isexistingdatathathasbeenmanuallyevaluatedandassignedaclassand

________isexistingdatausedtoevaluatethemodel.

A)Testdata;Trainingdata

B)Trainingdata;Testdata

C)Structureddata;Unstructureddata

D)Unstructureddata;Structureddata

48)

________markthesplitbetweenoneclassandanother.

A)Decisiontrees

B)Identifyingquestions

C)Decisionboundaries

D)Linearclassifiers

49)________statesthatinmanynaturallyoccurringcollectionsofnumbers,theleadingsignificantdigitislikelytobesmall.

A)Leadingdigitshypothesis

B)Moore'slaw

C)Benford'slaw

D)Classification

50)Unawareofdataanalysistoolsavailabletotheinternalauditors,astoreemployeefrequentlyprocessescashreturnswithoutareceiptfor$99,whichisjustbelowtheamountrequiringmanagerapprovalof$100.Ananalysisusingwhichofthefollowingwouldlikely(andquickly)identifytheemployee'sfraudulentbehavior?

A)Leadingdigitshypothesis

B)Moore'slaw

C)Benford'slaw

D)Clustering

51)Whatisthedifferencebetweenstructureddataandunstructureddata?Provideanexampleofeach.

52)Decisiontreesareusedtodividedataintosmallergroupsbysplittingthedataateachbranchintotwoormoregroups.However,thismethodcouldleadtounintendedconsequencesifthedecisiontreeisnotpruned.Describethepruningprocess,whenitcanoccurandthebenefitsofusingit.

53)Chapter3discussed5(five)dat

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論