浙江寧波市北侖區(qū)2025屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第1頁
浙江寧波市北侖區(qū)2025屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第2頁
浙江寧波市北侖區(qū)2025屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第3頁
浙江寧波市北侖區(qū)2025屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第4頁
浙江寧波市北侖區(qū)2025屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江寧波市北侖區(qū)2025屆數(shù)學(xué)高二上期末監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知空間四邊形中,,,,點在上,且,為中點,則等于()A. B.C. D.2.德國數(shù)學(xué)家高斯是近代數(shù)學(xué)奠基者之一,有“數(shù)學(xué)王子”之稱,在歷史上有很大的影響.他幼年時就表現(xiàn)出超人的數(shù)學(xué)天才,10歲時,他在進行的求和運算時,就提出了倒序相加法的原理,該原理基于所給數(shù)據(jù)前后對應(yīng)項的和呈現(xiàn)一定的規(guī)律生成,因此,此方法也稱之為高斯算法.已知數(shù)列,則()A.96 B.97C.98 D.993.已知數(shù)列滿足,則()A.32 B.C.1320 D.4.《周髀算經(jīng)》中有這樣一個問題,從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣日影長依次成等差數(shù)列,若冬至、大寒、雨水的日影長的和為36.3尺,小寒、驚蟄、立夏的日影長的和為18.3尺,則冬至的日影長為()A4尺 B.8.5尺C.16.1尺 D.18.1尺5.函數(shù)的單調(diào)遞減區(qū)間是()A. B.C. D.6.已知向量分別是直線的方向向量,若,則()A. B.C. D.7.一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,另兩名員工數(shù)據(jù)不清楚,那么8位員工月工資的中位數(shù)不可能是()A.5800 B.6000C.6200 D.64008.?dāng)?shù)列2,,9,,的一個通項公式可以是()A. B.C. D.9.在等比數(shù)列中,是和的等差中項,則公比的值為()A.-2 B.1C.2或-1 D.-2或110.若數(shù)列1,a,b,c,9是等比數(shù)列,則實數(shù)b的值為()A.5 B.C.3 D.3或11.在空間直角坐標系中,已知點M是點在坐標平面內(nèi)的射影,則的坐標是()A. B.C. D.12.函數(shù)有兩個不同的零點,則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若=,則x的值為_______14.給出下列命題:①若兩條不同的直線同時垂直于第三條直線,則這兩條直線互相平行;②若兩個不同的平面同時垂直于同一條直線,則這兩個平面互相平行;③若兩條不同的直線同時垂直于同一個平面,則這兩條直線互相平行;④若兩個不同的平面同時垂直于第三個平面,則這兩個平面互相垂直.其中所有正確命題的序號為________.15.設(shè)等差數(shù)列的前項和為,且,,則__________.16.若直線與直線互相垂直,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)當(dāng)時,求的單調(diào)區(qū)間;(2)當(dāng)時,證明:存在最大值,且恒成立.18.(12分)如圖,四邊形ABCD是正方形,四邊形BEDF是菱形,平面平面.(1)證明:;(2)若,且平面平面BEDF,求平面ADE與平面CDF所成的二面角的正弦值.19.(12分)在平面直角坐標系中,過點且傾斜角為的直線與曲線(為參數(shù))交于兩點.(1)將曲線的參數(shù)方程轉(zhuǎn)化為普通方程;(2)求的長.20.(12分)如圖所示,四棱錐的底面為矩形,,,過底面對角線作與平行的平面交于點(1)求二面角的余弦值;(2)求與所成角的余弦值;(3)求與平面所成角的正弦值21.(12分)已知數(shù)列{}滿足a1=1,a3+a7=18,且(n≥2)(1)求數(shù)列{}的通項公式;(2)若=·,求數(shù)列的前n項和22.(10分)已知橢圓的離心率為,且點在C上.(1)求橢圓C的標準方程;(2)設(shè),為橢圓C的左,右焦點,過右焦點的直線l交橢圓C于A,B兩點,若內(nèi)切圓的半徑為,求直線l的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用空間向量運算求得正確答案.【詳解】.故選:B2、C【解析】令,利用倒序相加原理計算即可得出結(jié)果.【詳解】令,,兩式相加得:,∴,故選:C3、A【解析】先令,求出,再當(dāng)時,由,可得,然后兩式相比,求出,從而可求出,進而可求得答案【詳解】當(dāng)時,,當(dāng)時,由,可得,兩式相除可得,所以,所以,故選:A4、C【解析】設(shè)等差數(shù)列,用基本量代換列方程組,即可求解.【詳解】由題意,從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣的日影長依次成等差數(shù)列,記為數(shù)列,公差為d,則有,即,解得:,即冬至的日影長為16.1尺.故選:C5、D【解析】求導(dǎo)后,利用求得函數(shù)的單調(diào)遞減區(qū)間.【詳解】解:,則,由得,故選:D.6、C【解析】由題意,得,由此可求出答案【詳解】解:∵,且分別是直線的方向向量,∴,∴,∴,故選:C【點睛】本題主要考查向量共線的坐標表示,屬于基礎(chǔ)題7、D【解析】解:∵一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,∴當(dāng)另外兩名員工的工資都小于5300時,中位數(shù)為(5300+5500)÷2=5400,當(dāng)另外兩名員工的工資都大于5300時,中位數(shù)為(6100+6500)÷2=6300,∴8位員工月工資的中位數(shù)的取值區(qū)間為[5400,6300],∴8位員工月工資的中位數(shù)不可能是6400.本題選擇D選項.8、C【解析】用檢驗法,由通項公式驗證是否符合數(shù)列各項,結(jié)合排除法可得【詳解】第一項為正數(shù),BD中求出第一項均為負數(shù),排除,而AC均滿足,A中,,排除A,C中滿足,,,故選:C9、D【解析】由題可得,即求.【詳解】由題意,得,所以,因為,所以,解得或.故選:D.10、C【解析】根據(jù)等比數(shù)列的定義,利用等比數(shù)列的通項公式求解【詳解】解:設(shè)該等比數(shù)列公比為q,∵數(shù)列1,a,b,c,9是等比數(shù)列,∴,,∴,故,解得,∴故選:C11、C【解析】點在平面內(nèi)的射影是坐標不變,坐標為0的點.【詳解】點在坐標平面內(nèi)的射影為,故點M的坐標是故選:C12、B【解析】方程有兩個根,轉(zhuǎn)化為求函數(shù)的單調(diào)性與極值【詳解】函數(shù)定義域是,有兩個零點,即有兩個不等實根,即有兩個不等實根設(shè),則,時,,遞減,時,,遞增,極小值=,而時,,時,,所以故選:B二、填空題:本題共4小題,每小題5分,共20分。13、4或9.【解析】分析:先根據(jù)組合數(shù)性質(zhì)得,解方程得結(jié)果詳解:因為=,所以因此點睛:組合數(shù)性質(zhì):14、②③【解析】由垂直于同一直線的兩直線的位置關(guān)系判斷①;由直線與平面垂直的性質(zhì)判斷②③;由空間中平面與平面的位置關(guān)系判斷④【詳解】①若兩條不同的直線垂直于第三條直線,則這兩條直線有三種位置關(guān)系:平行、相交或異面,故錯誤;②根據(jù)線面垂直的性質(zhì)知,若兩個不同的平面垂直于一條直線,則這兩個平面互相平行,故正確;③由線面垂直的性質(zhì)知:若兩條不同的直線同時垂直于同一個平面,則這兩條直線互相平行,故正確④若兩個不同的平面同時垂直于第三個平面,這兩個平面相交或平行,故錯誤.其中所有正確命題的序號為②③故答案為:②③15、【解析】根據(jù),利用等差數(shù)列前項和公式,列方程求出,再由,能求出【詳解】等差數(shù)列的前項和為,且,,,解得,,,解得,故答案為:1016、4【解析】由直線垂直的性質(zhì)求解即可.【詳解】由題意得,解得.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的單增區(qū)間為,;單減區(qū)間為,,;(2)證明見解析.【解析】(1)先求出函數(shù)的定義域,求出,由,結(jié)合函數(shù)的定義域可得出函數(shù)的單調(diào)區(qū)間.(2)當(dāng)時,定義域R,求出,從而得出單調(diào)區(qū)間,由當(dāng)時,,當(dāng)時,,以及極值點與2的大小關(guān)系可得出當(dāng)時,函數(shù)有最大值,然后再證明即可.【詳解】解:(1)定義域,可得且且,,可得且3無0無0減無減增無增減所以,的單增區(qū)間為,;單減區(qū)間為,,.(2)當(dāng)時,定義域R因為,當(dāng)時,,當(dāng)時,,所以的最大值在時取得;由,即,得由,得,或由,得所以在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.當(dāng)時,,且,由所以當(dāng)時,函數(shù)有最大值.所以,因為,所以,設(shè),則所以化為由,則,則,所以所以18、(1)證明見解析;(2).【解析】(1)連接交于點,連接,要證明,只需證明平面即可;(2)以D為原點建系,分別求出平面與平面的法向量,再利用向量的夾角公式計算即可得到答案.【詳解】(1)證明:如圖,連接交于點,連接四邊形為正方形,,且為的中點又四邊形為菱形,平面平面又平面OAE.(2)解:如圖,建立空間直角坐標系,不妨設(shè),則,,則由(1)得又平面平面,平面平面,平面ABCD,故,同理,設(shè)為平面的法向量,為平面的法向量,則故可取,同理故可取,所以設(shè)平面與平面所成的二面角為,則,所以平面與平面所成的二面角的正弦值為19、(1);(2).【解析】(1)利用公式直接將橢圓的參數(shù)方程轉(zhuǎn)化為普通方程即可.(2)首先求出直線的參數(shù)方程,代入橢圓的普通方程得到,再利用直線參數(shù)方程的幾何意義求弦長即可.【詳解】(1)因為曲線(為參數(shù)),所以曲線的普通方程為:.(2)由題知:直線的參數(shù)方程為(為參數(shù)),將直線的參數(shù)方程代入,得.,.所以.20、(1);(2);(3).【解析】(1)設(shè),連接、,證明出平面,推導(dǎo)出為的中點,然后以點為坐標原點,、、的方向分別為、、軸的正方向建立空間直角坐標系,利用空間向量法可求得二面角的余弦值;(2)利用空間向量法可求得與所成角的余弦值;(3)利用空間向量法可求得與平面所成角的正弦值.【小問1詳解】解:設(shè),則為、的中點,連接、,因為平面,平面,平面平面,則,因為為的中點,則為的中點,因為,為的中點,則,同理可證,,平面,,,則,,以點為坐標原點,、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標系,則、、、、、,設(shè)平面的法向量為,,,由,取,可得,易知平面的一個法向量為,.由圖可知,二面角的平面角為銳角,因此,二面角的余弦值為.【小問2詳解】解:,,,因此,與所成角的余弦值為.【小問3詳解】解:,,因此,與平面所成角的正弦值為.21、(1);(2)【解析】(1)由等差中項可知數(shù)列是等差數(shù)列,根據(jù)已知可求得其公差,從而可得其通項公式;(2)分析可知應(yīng)用錯位相減法求數(shù)列的和【詳解】(1)由知,數(shù)列是等差數(shù)列,設(shè)其公差為,則,所以,,即數(shù)列的通項公式為(2),,,兩式相減

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論