版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆安徽省淮北市實驗高級中學數學高二上期末達標檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是雙曲線的左焦點,圓與雙曲線在第一象限的交點為,若的中點在雙曲線的漸近線上,則此雙曲線的離心率是()A. B.2C. D.2.已知函數的圖象如圖所示,則其導函數的圖象大致形狀為()A. B.C. D.3.點M在圓上,點N在直線上,則|MN|的最小值是()A. B.C. D.14.直線的斜率為()A.135° B.45°C.1 D.-15.已知圓:的面積被直線平分,圓:,則圓與圓的位置關系是()A.相離 B.相交C.內切 D.外切6.已知梯形ABCD中,,,且對角線交于點E,過點E作與AB所在直線的平行線l.若AB和CD所在直線的方程分別是與,則直線l與CD所在直線的距離為()A.1 B.2C.3 D.47.已知數列滿足,則()A. B.C. D.8.已知函數,若對任意,都有成立,則a的取值范圍為()A. B.C. D.9.是橢圓的焦點,點在橢圓上,點到的距離為1,則到的距離為()A.3 B.4C.5 D.610.如圖,執(zhí)行該程序框圖,則輸出的的值為()A. B.2C. D.311.下列命題中,真命題的個數為()(1)是為雙曲線的充要條件;(2)若,則;(3)若,,則;(4)橢圓上的點距點最近的距離為;A.個 B.個C.個 D.個12.若數列滿足,則數列的通項公式為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數列的前項和為,若,,則______.14.某次國際會議為了搞好對外宣傳工作,會務組選聘了50名記者擔任對外翻譯工作,在如表“性別與會外語”的列聯表中,______.會外語不會外語合計男ab20女6d合計185015.已知直線與,若,則實數a的值為______16.兩個人射擊,互相獨立.已知甲射擊一次中靶概率是0.6,乙射擊一次中靶概率是0.3,現在兩人各射擊一次,中靶至少一次就算完成目標,則完成目標的概率為_____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,是平行四邊形,已知,,平面平面.(1)證明:;(2)若,求平面與平面所成二面角的平面角的余弦值18.(12分)已知函數.(1)求的單調遞減區(qū)間;(2)在銳角中,,,分別為角,,的對邊,且滿足,求的取值范圍.19.(12分)已知:方程表示焦點在軸上的橢圓,:方程表示焦點在軸上的雙曲線,其中.(1)若“”為真命題,求的取值范圍:(2)若“”為假命題,“”為真命題,求的取值范圍.20.(12分)某學校一航模小組進行飛機模型飛行高度實驗,飛機模型在第一分鐘時間內上升了米高度.若通過動力控制系統(tǒng),可使飛機模型在以后的每一分鐘上升的高度都是它在前一分鐘上升高度的(1)在此動力控制系統(tǒng)下,該飛機模型在第三分鐘內上升的高度是多少米?(2)這個飛機模型上升的最大高度能超過米嗎?如果能,求出從第幾分鐘開始高度超過米;如果不能,請說明理由21.(12分)已知拋物線的焦點為F,點是拋物線上的點,且.(1)求拋物線方程;(2)直線與拋物線交于、兩點,且.求△OPQ面積的最小值.22.(10分)已知函數.(1)當時,求曲線在點處的切線方程;(2)當時,設,求函數的單調區(qū)間.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據雙曲線的幾何性質和平面幾何性質,建立關于a,b,c的方程,從而可求得雙曲線的離心率得選項.【詳解】由題意可設右焦點為,因為,且圓:,所以點在以焦距為直徑的圓上,則,設的中點為點,則為的中位線,所以,則,又點在漸近線上,所以,且,則,,所以,所以,則在中,可得,,即,解得,所以,故選:A【點睛】方法點睛:(1)求雙曲線的離心率時,將提供的雙曲線的幾何關系轉化為關于雙曲線基本量的方程或不等式,利用和轉化為關于e的方程或不等式,通過解方程或不等式求得離心率的值或取值范圍(2)對于焦點三角形,要注意雙曲線定義的應用,運用整體代換的方法可以減少計算量2、A【解析】利用f(x)先單調遞增的速度由快到慢,再由慢到快,結合導數的幾何意義判斷即可.【詳解】由f(x)的圖象可知,函數f(x)先單調遞增的速度由快到慢,再由慢到快,由導數的幾何意義可知,先減后增,且恒大于0,故符合題意的只有選項A.故選:A.3、C【解析】根據題意可知圓心,又由于線外一點到已知直線的垂線段最短,結合點到直線的距離公式,即可求出結果.【詳解】由題意可知,圓心,半徑為,所以圓心到的距離為,所以的最小值為.故選:C.4、D【解析】由斜截式直接看出直線斜率.【詳解】由題意得:直線斜率為-1,故選:D5、D【解析】根據題意,圓:的面積被直線平分,即直線經過圓的圓心,由此求出兩圓的圓心和半徑,然后判斷兩個圓的位置關系即可【詳解】根據題意,圓:,即,其圓心為,半徑,圓:的面積被直線平分,即直線經過圓的圓心,則有1?m+1=0,解可得m=2,即所以圓的圓心(1,?1),半徑為1,圓的標準方程是,圓心(?2,3),半徑為4,其圓心距,所以兩個圓外切,故選:D.6、B【解析】先求得直線AB和CD之間的距離,再求直線l與CD所在直線的距離即可解決.【詳解】梯形ABCD中,,,且對角線交于點E,則有△與△相似,相似比為,則,點E到CD所在直線的距離為AB和CD所在直線距離的又AB和CD所在直線的距離為,則直線l與CD所在直線的距離為2故選:B7、D【解析】根據給定條件求出數列的通項公式,再利用裂項相消法即可計算作答.【詳解】因,則,所以,所以.故選:D8、C【解析】求出函數的導數,再對給定不等式等價變形,分離參數借助均值不等式計算作答.【詳解】對函數求導得:,,,則,,而,當且僅當,即時“=”,于是得,解得,所以a的取值范圍為.故選:C【點睛】關鍵點睛:涉及不等式恒成立問題,將給定不等式等價轉化,構造函數,利用函數思想是解決問題的關鍵.9、C【解析】利用橢圓的定義直接求解【詳解】由題意得,得,因為,,所以,故選:C10、B【解析】根據程序流程圖依次算出的值即可.【詳解】,第一次執(zhí)行,,第二次執(zhí)行,,第三次執(zhí)行,,所以輸出.故選:B11、A【解析】利用方程表示雙曲線求出的取值范圍,利用集合的包含關系可判斷(1)的正誤;直接判斷命題的正誤,可判斷(2)的正誤;利用空間向量垂直的坐標表示可判斷(3)的正誤;利用橢圓的有界性可判斷(4)的正誤.【詳解】對于(1),若曲線為雙曲線,則,即,解得或,因為或,因此,是為雙曲線的充分不必要條件,(1)錯;對于(2),若,則或,(2)錯;對于(3),,則,(3)對;對于(4),設點為橢圓上一點,則且,則點到點的距離為,(4)錯.故選:A.12、D【解析】由,分兩步,當求出,當時得到,兩式作差即可求出數列的通項公式;【詳解】解:因為①,當時,,當時②,①②得,所以,當時也成立,所以;故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設等比數列的公比為,根據已知條件求出的值,由此可得出的值.【詳解】設等比數列的公比為,則,整理可得,,解得,因此,.故答案為:.14、24【解析】根據題意列方程組求解即可【詳解】由題意得所以,,.故答案為:2415、【解析】由可得,從而可求出實數a的值【詳解】因為直線與,且,所以,解得,故答案:16、72【解析】利用獨立事件的概率乘法公式和對立事件的概率公式可求得所求事件的概率.【詳解】由題意可知,若甲、乙兩個各射擊1次,至少有一人命中目標的概率為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】(1)推導出,取BC的中點F,連結EF,可推出,從而平面,進而,由此得到平面,從而;(2)以為坐標原點,,所在直線分別為,軸,以過點且與平行的直線為軸,建立空間直角坐標系,利用向量法能求出平面與平面所成二面角的余弦值【詳解】(1)∵是平行四邊形,且∴,故,即取BC的中點F,連結EF.∵∴又∵平面平面∴平面∵平面∴∵平面∴平面,∵平面∴(2)∵,由(Ⅰ)得以為坐標原點,所在直線分別為軸,建立空間直角坐標系(如圖),則∴設平面的法向量為,則,即得平面一個法向量為由(1)知平面,所以可設平面的法向量為設平面與平面所成二面角的平面角為,則即平面與平面所成二面角的平面角的余弦值為.【點睛】用空間向量求解立體幾何問題的注意點(1)建立坐標系時要確保條件具備,即要證明得到兩兩垂直的三條直線,建系后要準確求得所需點的坐標(2)用平面的法向量求二面角的大小時,要注意向量的夾角與二面角大小間的關系,這點需要通過觀察圖形來判斷二面角是銳角還是鈍角,然后作出正確的結論18、(1)(2)【解析】(1)根據降冪公式化簡的解析式,再用整體代入法即可求出函數的單調遞減區(qū)間;(2)由正弦定理邊化角,從而可求得,根據銳角三角形可得從而可求出答案【詳解】解:(1),由得所以的單調遞減區(qū)間為;(2)由正弦定理得,∵∴,即,,得,或,解得,或(舍),∵為銳角三角形,∴解得∴∴的取值范圍為【點睛】本題主要考查三角函數的化簡與性質,考查正弦定理的作用,屬于基礎題19、(1)或(2)【解析】(1)先假設命題為真命題,求出的取值范圍,為真命題,取補集即可(2)假設命題為真命題,求出的取值范圍,根據題意,則命題假設和命題一真一假,分類討論求的取值范圍【小問1詳解】解:若為真命題,則,解得,若“”為真命題,則為假命題,或;【小問2詳解】若為真命題,則解得,若“”為假命題,則“”為真命題,則與一真一假,①若真假,則解得,②若真假,則解得,綜上所述,,即的取值范圍為.20、(1);(2)不能,理由見解析.【解析】(1)由題得每分鐘上升的高度構成等比數列,再利用等比數列的通項求解;(2)求出即得解.【小問1詳解】解:由題意,飛機模型每分鐘上升的高度構成,公比的等比數列,則米.即飛機模型在第三分鐘內上升的高度是米.【小問2詳解】解:不能超過米.依題意可得,所以這個飛機模型上升的最大高度不能超過米.21、(1);(2).【解析】(1)根據拋物線的定義列方程,由此求得,進而求得拋物線方程.(2)聯立直線的方程和拋物線方程,寫出根與系數關系,結合求得的值,求得三角形面積的表達
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 軟件代理合同篇
- 二零二五年城市配送貨物承包運營合同6篇
- 與廣告公司合作合同
- 北京郵電大學世紀學院《英國史專題》2023-2024學年第一學期期末試卷
- 2025年度空放借款合同智能合約開發(fā)與實施3篇
- 設備買賣合同范本
- 二手車不過戶交易合同
- 小學生讀書筆記15篇
- 庫房倉儲托管合同托管模式
- 小學二年級閱讀心得五篇范文
- 市場營銷試題(含參考答案)
- 景區(qū)旅游安全風險評估報告
- 2023年新高考(新課標)全國2卷數學試題真題(含答案解析)
- 事業(yè)單位工作人員獎勵審批表
- 2024年中煤平朔集團有限公司招聘筆試參考題庫含答案解析
- 水中五日生化需氧量測定的影響因素
- GB/T 28708-2012管道工程用無縫及焊接鋼管尺寸選用規(guī)定
- GB/T 231.2-2012金屬材料布氏硬度試驗第2部分:硬度計的檢驗與校準
- GA/T 975-2019警用裝備名詞術語
- 《天津市安全生產條例》試習題 -參考答案
- 傳統(tǒng)運動養(yǎng)生法課件
評論
0/150
提交評論