版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆廣東大埔華僑二中高二上數(shù)學期末監(jiān)測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.空間四點共面,但任意三點不共線,若為該平面外一點且,則實數(shù)的值為()A. B.C. D.2.不等式的一個必要不充分條件是()A. B.C. D.3.已知直線和互相垂直,則實數(shù)的值為()A. B.C.或 D.4.設函數(shù)在定義域內(nèi)可導,的圖像如圖所示,則導函數(shù)的圖象可能為()A. B.C. D.5.已知a,b為不相等實數(shù),記,則M與N的大小關系為()A. B.C. D.不確定6.已知拋物線的焦點為,準線為,是上一點,是直線與拋物線的一個交點,若,則()A. B.3C. D.27.阿基米德曾說過:“給我一個支點,我就能撬動地球”.他在做數(shù)學研究時,有一個有趣的問題:一個邊長為2的正方形內(nèi)部挖了一個內(nèi)切圓,現(xiàn)在以該內(nèi)切圓的圓心且平行于正方形的一邊的直線為軸旋轉一周形成幾何體,則該旋轉體的體積為()A. B.C. D.8.若直線:與:互相平行,則a的值是()A. B.2C.或2 D.3或9.在等差數(shù)列中,已知,則數(shù)列的前6項之和為()A.12 B.32C.36 D.3710.在正項等比數(shù)列中,,,則()A27 B.64C.81 D.25611.橢圓的長軸長為()A. B.C. D.12.過點A(3,3)且垂直于直線的直線方程為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.動點M在圓上移動,則M與定點連線的中點P的軌跡方程為___________.14.已知長方體的棱,則異面直線與所成角的大小是________________.(結果用反三角函數(shù)值表示)15.已知雙曲線,的左、右焦點分別為、,且的焦點到漸近線的距離為1,直線與交于,兩點,為弦的中點,若為坐標原點)的斜率為,,則下列結論正確的是____________①;②的離心率為;③若,則的面積為2;④若的面積為,則為鈍角三角形16.長方體中,,,已知點H,A,三點共線,且,則點H到平面ABCD的距離為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知的三個內(nèi)角,,的對邊分別為,,,且滿足.(1)求角的大小;(2)若,,,求的長.18.(12分)已知是拋物線的焦點,點在拋物線上,且.(1)求的方程;(2)過上一動點作的切線交軸于點.判斷線段的中垂線是否過定點?若過定點,求出定點坐標;若不過定點,請說明理由.19.(12分)已知等差數(shù)列中,,,等比數(shù)列中,,(1)求數(shù)列的通項公式;(2)記,求的最小值20.(12分)已知數(shù)列的前項和滿足(1)證明:數(shù)列為等比數(shù)列;(2)若數(shù)列為等差數(shù)列,且,,求數(shù)列的前項和21.(12分)已知函數(shù),當時,函數(shù)有極值1.(1)求函數(shù)的解析式;(2)若關于x的方程有一個實數(shù)根,求實數(shù)m的取值范圍.22.(10分)已知橢圓C:()過點,且離心率為(1)求橢圓C的方程;(2)過點()的直線l(不與x軸重合)與橢圓C交于A,B兩點,點C與點B關于x軸對稱,直線AC與x軸交于點Q,試問是否為定值?若是,請求出該定值,若不是,請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由空間向量共面定理構造方程求得結果.【詳解】空間四點共面,但任意三點不共線,,解得:.故選:A.2、B【解析】解不等式,由此判斷必要不充分條件.【詳解】,解得,所以不等式的一個必要不充分條件是.故選:B3、B【解析】由兩直線垂直可得出關于實數(shù)的等式,求解即可.【詳解】由已知可得,解得.故選:B.4、D【解析】根據(jù)函數(shù)的單調(diào)性得到導數(shù)的正負,從而得到函數(shù)的圖象.【詳解】由函數(shù)的圖象可知,當時,單調(diào)遞增,則,所以A選項和C選項錯誤;當時,先增,再減,然后再增,則先正,再負,然后再正,所以B選項錯誤.故選:D.【點睛】本題主要考查函數(shù)的單調(diào)性和導數(shù)的關系,意在考查學生對該知識的掌握水平,屬于基礎題.一般地,函數(shù)在某個區(qū)間可導,,則在這個區(qū)間是增函數(shù);函數(shù)在某個區(qū)間可導,,則在這個區(qū)間是減函數(shù).5、A【解析】利用作差法即可比較M與N的大小﹒【詳解】因為,又,所以,即故選:A6、D【解析】根據(jù)拋物線的定義求得,由此求得的長.【詳解】過作,垂足為,設與軸交點為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點睛】本小題主要考查拋物線定義,考查數(shù)形結合的數(shù)學思想方法,屬于基礎題.7、B【解析】根據(jù)題意,結合圓柱和球的體積公式進行求解即可.【詳解】由題意可知:該旋轉體的體積等于底面半徑為,高為的圓柱的體積減去半徑為的球的體積,即,故選:B8、A【解析】根據(jù)直線:與:互相平行,由求解.【詳解】因為直線:與:互相平行,所以,即,解得或,當時,直線:,:,互相平行;當時,直線:,:,重合;所以,故選:A9、C【解析】直接按照等差數(shù)列項數(shù)性質(zhì)求解即可.【詳解】數(shù)列的前6項之和為.故選:C.10、C【解析】根據(jù)等比數(shù)列的通項公式求出公比,進而求得答案.【詳解】設的公比為,則(負值舍去),所以.故選:C.11、D【解析】由橢圓方程可直接求得.【詳解】由橢圓方程知:,長軸長為.故選:D.12、D【解析】過點A(3,3)且垂直于直線的直線斜率為,代入過的點得到.故答案為D.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】設,中點,根據(jù)中點坐標公式求出,代入圓的標準方程即可得出結果.【詳解】設,中點,則,即,因為在圓上,代入得故答案為:.14、【解析】建立空間直角坐標系,求出異面直線與的方向向量,再求出兩向量的夾角,進而可得異面直線與所成角的大小【詳解】解:建立如圖所示的空間直角坐標系:在長方體中,,,,,,,,,,異面直線與所成角的大小是故答案為:15、②④【解析】由已知可得,可求,,從而判斷①②,求出△的面積可判斷③,設,,利用面積求出點的坐標,再求邊長,求出可判斷④【詳解】解:設,,,,可得,,兩式相減可得,由題意可得,且,,,,,,故②正確;的焦點到漸近線的距離為1,設到漸近線的距離為,則,即,,故①錯誤,,若,不妨設在右支上,,又,,則的面積為,故③不正確;設,,,,將代入雙曲線,得,,根據(jù)雙曲線的對稱性,不妨取點的坐標為,,,,,為鈍角,為鈍角三角形.故④正確故答案為:②④16、【解析】在長方體中,以點A為原點建立空間直角坐標系,利用已知條件求出點H的坐標作答.【詳解】在長方體中,以點A為原點建立如圖所示的空間直角坐標系,則,,因點H,A,三點共線,令,點,則,又,則,解得,所以點到平面ABCD的距離為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由正弦定理化邊為角后,結合兩角和的正弦公式、誘導公式可求得;(2)用表示出,然后平方由數(shù)量積的運算求得向量的模(線段長度)【詳解】(1)因為,所以由正弦定理可得,即,因為,所以,,∵,故;(2)由,得,所以,所以.18、(1)(2)過定點,定點為【解析】(1)利用拋物線的定義求解;(2)設直線的方程為,,與拋物線方程聯(lián)立,根據(jù)直線與拋物線C相切,由求得,再得到,寫出線段的中垂線方程求解.【小問1詳解】解:由題意得,,解得=2p,因為點M(,4)在拋物線C上,所以42=2p=4p2,解得p=2,所以拋物線C的標準方程為.【小問2詳解】由已知得,直線的斜率存在且不為0,所以設直線的方程為,與拋物線方程聯(lián)立并消去得:,因為直線與拋物線C相切,所以,得,,所以,得,在中,令得,所以,所以線段中點為,線段的中垂線方程為,所以線段的中垂線過定點.19、(1)(2)0【解析】(1)利用等差數(shù)列通項公式基本量的計算可求得,進而利用等比數(shù)列的基本量的計算即可求得數(shù)列的通項公式;(2)由(1)可知,則,觀察分析即可解【小問1詳解】設等差數(shù)列的公差為d,所以由,,得所以,從而,,所以,,q=3,所以【小問2詳解】由(1)可知,所以,當n=1時,為正值﹐所以;當n=2時,為負值﹐所以;當時,為正值﹐所以又綜上:當n=3時,有最小值020、(1)證明見解析(2)【解析】(1)由與的關系,利用等比數(shù)列的定義證明即可;(2)由(1)求出,再利用裂項相消法求解即可【小問1詳解】當時,,,當時,,,,數(shù)列是以為首項、以為公比的等比數(shù)列【小問2詳解】由(1)得,,即,,設等差數(shù)列的公差為,則,,,,,21、(1)(2)【解析】(1)根據(jù),可得可得結果.(2)根據(jù)等價轉換的思想,可得,利用導數(shù)研究函數(shù)的單調(diào)性,并比較的極值與的大小關系,可得結果.【詳解】(1)由,有,又有,解得:,,故函數(shù)的解析式為(2)由(1)有可知:故函數(shù)的增區(qū)間為,,減區(qū)間為,所以的極小值為,極大值為由關于x的方程有一個實數(shù)根,等價于方程有一個實數(shù)根,即等價于函數(shù)的圖像只有一個交點實數(shù)m的取值范圍為【點睛】本題考查根據(jù)極值求函數(shù)的解析式,還考查了方程的根與函數(shù)圖像交點的等價轉換,屬基礎題.22、(1)(2)為定值【解析】(1)由題意可得解方程組求出,從而可得橢圓方程,(2)設直線AB:,,代入橢圓方程,消去,利用根與系數(shù)關系,再表示出直線AC的方程,從而可求出點Q的坐標,從而可表示出,然后化簡可得結論【小問1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度上海市高校教師資格證之高等教育心理學綜合檢測試卷B卷含答案
- 2024年度上海市高校教師資格證之高等教育法規(guī)過關檢測試卷A卷附答案
- 2024年汽車充電樁采購與供應協(xié)議樣本版
- 2024年公司股東注資協(xié)議樣本版
- 2024新版無爭議離婚合同范本
- 砂紙卷市場環(huán)境與對策分析
- 2024年高性能黏結劑產(chǎn)品銷售合同版
- 滑雪杖市場環(huán)境與對策分析
- 小升初專項復習 專題22:問答搭配
- 教育行業(yè)信息化管理系統(tǒng)建設方案
- 鳥的天堂(課件)五年級上冊語文
- 安全防護用品采購管理制度
- 人教版《燭之武退秦師》課件(共42張)
- 中醫(yī)定向透藥治療在臨床上的應用試題及答案
- 老小區(qū)消防改造工程施工方案
- (高清版)TDT 1031.6-2011 土地復墾方案編制規(guī)程 第6部分:建設項目
- 職業(yè)生涯規(guī)劃剪輯師
- 人教版四年級上冊數(shù)學第三單元《角的度量》測試卷附答案
- 廉潔教育教師指導用書
- 2024年度國家社會科學基金項目課題指南
- 關于人員調(diào)整的報告
評論
0/150
提交評論