版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
四川省廣安市武勝烈面中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.變量與的數(shù)據(jù)如表所示,其中缺少了一個數(shù)值,已知關(guān)于的線性回歸方程為,則缺少的數(shù)值為()22232425262324▲2628A.24 B.25C.25.5 D.262.若且,則下列不等式中一定成立的是()A. B.C. D.3.已知空間向量,且與垂直,則等于()A.-2 B.-1C.1 D.24.若直線與直線垂直,則a=()A.-2 B.0C.0或-2 D.15.已知函數(shù),若對任意的,,且,總有,則的取值范圍是()A B.C. D.6.函數(shù)在區(qū)間上平均變化率等于()A. B.C. D.7.()A.-2 B.-1C.1 D.28.雙曲線的虛軸長為()A. B.C.3 D.69.已知F為橢圓C:=1(a>b>0)右焦點,O為坐標(biāo)原點,P為橢圓C上一點,若|OP|=|OF|,∠POF=120°,則橢圓C的離心率為()A. B.C.-1 D.-110.已知橢圓的離心率為.雙曲線的漸近線與橢圓有四個交點,以這四個焦點為頂點的四邊形的面積為16,則橢圓的方程為A. B.C. D.11.命題:“x>0,都有x2-x+1≤0”的否定是()A.x>0,使得x2-x+1≤0 B.x>0,使得x2-x+1>0C.x>0,都有x2-x+1>0 D.x≤0,都有x2-x+1>012.執(zhí)行如圖所示的程序框圖,則輸出S的值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與圓相切,則__________.14.?dāng)?shù)列滿足,,則___________.15.?dāng)?shù)學(xué)家華羅庚說:“數(shù)缺形時少直觀,形少數(shù)時難入微”,事實上,很多代數(shù)問題可以轉(zhuǎn)化為幾何問題加以解決.例如:與相關(guān)的代數(shù)問題,可以轉(zhuǎn)化為點與點之間的距離的幾何問題.結(jié)合上述觀點:對于函數(shù),的最小值為______16.點到拋物線上的點的距離的最小值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,以坐標(biāo)原點為圓心,以橢圓M的短半軸長為半徑的圓與直線有且只有一個公共點(1)求橢圓M的標(biāo)準(zhǔn)方程;(2)過橢圓M的右焦點F的直線交橢圓M于A,B兩點,過F且垂直于直線的直線交橢圓M于C,D兩點,則是否存在實數(shù)使成立?若存在,求出的值;若不存在,請說明理由18.(12分)某種機械設(shè)備隨著使用年限的增加,它的使用功能逐漸減退,使用價值逐年減少,通常把它使用價值逐年減少的“量”換算成費用,稱之為“失效費”.某種機械設(shè)備的使用年限(單位:年)與失效費(單位:萬元)的統(tǒng)計數(shù)據(jù)如下表所示:使用年限(單位:年)1234567失效費(單位:萬元)2.903.303.604.404.805.205.90(1)由上表數(shù)據(jù)可知,可用線性回歸模型擬合與關(guān)系.請用相關(guān)系數(shù)加以說明;(精確到0.01)(2)求出關(guān)于的線性回歸方程,并估算該種機械設(shè)備使用8年的失效費參考公式:相關(guān)系數(shù)線性回歸方程中斜率和截距最小二乘估計計算公式:,參考數(shù)據(jù):,,19.(12分)已知函數(shù)(1)當(dāng)時,求的單調(diào)區(qū)間;(2)當(dāng)時,證明:存在最大值,且恒成立.20.(12分)已知數(shù)列,若_________________(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和從下列三個條件中任選一個補充在上面的橫線上,然后對題目進(jìn)行求解①;②,,;③,點,在斜率是2的直線上21.(12分)已知函數(shù).(1)求函數(shù)的極值;(2)若對恒成立,求實數(shù)a的取值范圍.22.(10分)已知數(shù)列滿足,且.(1)求數(shù)列的通項公式;(2)若,為數(shù)列的前n項和,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】可設(shè)出缺少的數(shù)值,利用表中的數(shù)據(jù),分別表示出、,將樣本中心點帶入回歸方程,即可求得參數(shù).【詳解】設(shè)缺少的數(shù)值為,則,,因為回歸直線方程經(jīng)過樣本點的中心,所以,解得.故選:A2、D【解析】根據(jù)不等式的性質(zhì)即可判斷.【詳解】對于A,若,則不等式不成立;對于B,若,則不等式不成立;對于C,若均為負(fù)值,則不等式不成立;對于D,不等號的兩邊同乘負(fù)值,不等號的方向改變,故正確;故選:D【點睛】本題主要考查不等式的性質(zhì),需熟練掌握性質(zhì),屬于基礎(chǔ)題.3、B【解析】直接利用空間向量垂直的坐標(biāo)運算即可解決.【詳解】∵∴∴,解得,故選:B.4、C【解析】代入兩直線垂直的公式,即可求解.【詳解】因為兩直線垂直,所以,解得:或.故選:C5、B【解析】根據(jù)函數(shù)單調(diào)性定義、二次函數(shù)性質(zhì)及對稱軸方程,即可求解參數(shù)取值范圍.【詳解】依題意可得,在上為減函數(shù),則,即的取值范圍是故選:B【點睛】本題考查函數(shù)單調(diào)性定義,二次函數(shù)性質(zhì),屬于基礎(chǔ)題.6、C【解析】根據(jù)平均變化率的定義算出答案即可.【詳解】函數(shù)在區(qū)間上的平均變化率等于故選:C7、A【解析】利用微積分基本定理計算得到答案.【詳解】.故選:.【點睛】本題考查了定積分的計算,意在考查學(xué)生的計算能力.8、D【解析】根據(jù)題意,由雙曲線的方程求出的值,即可得答案【詳解】因為,所以,所以雙曲線的虛軸長為.故選:D.9、D【解析】記橢圓的左焦點為,在中,通過余弦定理得出,,根據(jù)橢圓的定義可得,進(jìn)而可得結(jié)果.【詳解】記橢圓的左焦點為,在中,可得,在中,可得,故,故,故選:D.10、D【解析】由題意,雙曲線的漸近線方程為,∵以這四個交點為頂點的四邊形為正方形,其面積為16,故邊長為4,∴(2,2)在橢圓C:上,∴,∵,∴,∴,∴∴橢圓方程為:.故選D.考點:橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì);雙曲線的幾何性質(zhì).11、B【解析】全稱命題的否定是特稱命題,把任意改為存在,把結(jié)論否定.【詳解】“x>0,都有x2-x+1≤0”的否定是“x>0,使得x2-x+1>0”.故選:B12、C【解析】按照程序框圖的流程進(jìn)行計算.【詳解】,故輸出S的值為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由直線與圓相切,結(jié)合點到直線的距離公式求解即可.【詳解】由直線與圓相切,所以圓心到直線l的距離等于半徑r,即.故答案為:14、【解析】根據(jù)題中所給的遞推式得到數(shù)列具有周期性,進(jìn)而得到結(jié)果.【詳解】根據(jù)題中遞推式知,可知數(shù)列具有周期性,周期為3,因為故故答案為:15、【解析】根據(jù)題意得,表示點與點與距離之和的最小值,再找對稱點求解即可.【詳解】函數(shù),表示點與點與距離之和的最小值,則點在軸上,點關(guān)于軸的對稱點,所以,所以的最小值為:.故答案為:.16、【解析】設(shè)出拋物線上點的坐標(biāo),利用兩點間距離公式,配方求出最小值.【詳解】設(shè)拋物線上的點坐標(biāo),則,當(dāng)時,取得最小值,且最小值為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,【解析】(1)求出后可得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)直線,聯(lián)立直線方程和橢圓方程,消元后利用韋達(dá)定理可用表示,從而可求的值.【小問1詳解】據(jù)題意,得,∴,∴所求橢圓M的標(biāo)準(zhǔn)方程為【小問2詳解】據(jù)(1)求解知,點F坐標(biāo)為若直線的斜率存在,且不等于0,設(shè)直線據(jù)得設(shè),則,∴同理可求知,∴,∴,即此時存滿足題設(shè);若直線的斜率不存在,則;若直線的斜率為0,則,此時若,則綜上,存在實數(shù),且使18、(1)答案見解析;(2);失效費為6.3萬元【解析】(1)根據(jù)相關(guān)系數(shù)公式計算出相關(guān)系數(shù)可得結(jié)果;(2)根據(jù)公式求出和可得關(guān)于的線性回歸方程,再代入可求出結(jié)果.【詳解】(1)由題意,知,,∴結(jié)合參考數(shù)據(jù)知:因為與的相關(guān)系數(shù)近似為0.99,所以與的線性相關(guān)程度相當(dāng)大,從而可以用線性回歸模型擬合與的關(guān)系(2)∵,∴∴關(guān)于的線性回歸方程為,將代入線性回歸方程得萬元,∴估算該種機械設(shè)備使用8年的失效費為6.3萬元19、(1)的單增區(qū)間為,;單減區(qū)間為,,;(2)證明見解析.【解析】(1)先求出函數(shù)的定義域,求出,由,結(jié)合函數(shù)的定義域可得出函數(shù)的單調(diào)區(qū)間.(2)當(dāng)時,定義域R,求出,從而得出單調(diào)區(qū)間,由當(dāng)時,,當(dāng)時,,以及極值點與2的大小關(guān)系可得出當(dāng)時,函數(shù)有最大值,然后再證明即可.【詳解】解:(1)定義域,可得且且,,可得且3無0無0減無減增無增減所以,的單增區(qū)間為,;單減區(qū)間為,,.(2)當(dāng)時,定義域R因為,當(dāng)時,,當(dāng)時,,所以的最大值在時取得;由,即,得由,得,或由,得所以在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.當(dāng)時,,且,由所以當(dāng)時,函數(shù)有最大值.所以,因為,所以,設(shè),則所以化為由,則,則,所以所以20、答案見解析.【解析】(1)若選①,根據(jù)通項公式與前項和的關(guān)系求解通項公式即可;若選②,根據(jù)可得數(shù)列為等差數(shù)列,利用基本量法求解通項公式即可;若選③,根據(jù)兩點間的斜率公式可得,可得數(shù)列為等差數(shù)列進(jìn)而求得通項公式;(2)利用裂項相消求和即可【詳解】解:(1)若選①,由,所以當(dāng),,兩式相減可得:,而在中,令可得:,符合上式,故若選②,由(,)可得:數(shù)列為等差數(shù)列,又因為,,所以,即,所以若選③,由點,在斜率是2的直線上得:,即,所以數(shù)列為等差數(shù)列且(2)由(1)知:,所以21、(1)極大值為,無極小值(2)【解析】(1)求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的正負(fù)判斷極值點,代入原函數(shù)計算即可;(2)將變形,即對恒成立,然后構(gòu)造函數(shù),利用求導(dǎo)判定函數(shù)的單調(diào)性,進(jìn)而確定實數(shù)a的取值范圍..【小問1詳解】對函數(shù)求導(dǎo)可得:,可知當(dāng)時,時,,即可知在上單調(diào)遞增,在上單調(diào)遞減由上可知,的極大值為,無極小值【小問2詳解】由對恒成立,當(dāng)時,恒成立;當(dāng)時,對恒成立,可變形為:對恒成立,令,則;求導(dǎo)可得:由(1)知即恒成
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中小學(xué)教師教學(xué)技能提升手冊
- 眼科檢查設(shè)備相關(guān)項目實施方案
- 洋參沖劑市場環(huán)境與對策分析
- 百褶裙項目評價分析報告
- 研膠機相關(guān)項目建議書
- 潛水用水下通氣管相關(guān)項目建議書
- 熔爐爐柵市場環(huán)境與對策分析
- 石油開采石油精煉工業(yè)用機器設(shè)備相關(guān)項目實施方案
- 牲畜助產(chǎn)器項目可行性實施報告
- 掃路機項目可行性實施報告
- 中醫(yī)體質(zhì)辨識介紹共41張課件
- 大學(xué)生就業(yè)指導(dǎo)教學(xué)-大學(xué)生就業(yè)準(zhǔn)備課件
- 交通運輸綜合行政執(zhí)法大隊工作(崗位)職責(zé)匯編
- 信用社法律合規(guī)部年度工作總結(jié)及明年工作計劃
- 高中英語-新人教必修一-Unit-2-listening-and-speaking-課件
- 醫(yī)學(xué)學(xué)員溝通和接診能力面試評分表
- 呂氏春秋卷十一 仲冬紀(jì) 長見原文及翻譯
- 宏觀經(jīng)濟(jì)與政策第五章練習(xí)題測試題
- 2022年一年級數(shù)學(xué)上冊期中復(fù)習(xí)計劃
- 城市建筑垃圾分類培訓(xùn)課件
- 土壤分析技術(shù)規(guī)范(第二版)
評論
0/150
提交評論