版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
河南省扶溝二中2025屆高一數(shù)學第一學期期末聯(lián)考試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)若函數(shù)有四個零點,零點從小到大依次為則的值為()A.2 B.C. D.2.已知直線:和直線:互相垂直,則實數(shù)的值為()A.-1 B.1C.0 D.23.函數(shù)(,)在一個周期內(nèi)的圖象如圖所示,為了得到正弦曲線,只需把圖象上所有的點()A.向左平移個單位長度,再把所得圖象上所有點的橫坐標縮短到原來的,縱坐標不變B.向右平移個單位長度,再把所得圖象上所有點的橫坐標伸長到原來的2倍,縱坐標不變C.向左平移個單位長度,再把所得圖象上所有點的橫坐標縮短到原來的,縱坐標不變D.向右平移個單位長度,再把所得圖象上所有點的橫坐標伸長到原來的2倍,縱坐標不變4.若函數(shù)是偶函數(shù),函數(shù)是奇函數(shù),則()A.函數(shù)是奇函數(shù) B.函數(shù)是偶函數(shù)C.函數(shù)是偶函數(shù) D.函數(shù)是奇函數(shù)5.已知函數(shù),則是A.最小正周期為的奇函數(shù) B.最小正周期為的偶函數(shù)C.最小正周期為的奇函數(shù) D.最小正周期為的偶函數(shù)6.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞增的函數(shù)是A. B.C. D.7.已知直三棱柱的頂點都在球上,且,,,則此直三棱柱的外接球的表面積是()A. B.C. D.8.已知集合,集合,則A∩B=()A. B.C. D.9.非零向量,,若點關于所在直線的對稱點為,則向量為A. B.C. D.10.函數(shù)部分圖像如圖所示,則的值為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.tan22°+tan23°+tan22°tan23°=_______12.若則函數(shù)的最小值為________13.符號表示不超過的最大整數(shù),如,定義函數(shù),則下列命題中正確是________.①函數(shù)最大值為;②函數(shù)的最小值為;③函數(shù)有無數(shù)個零點;④函數(shù)是增函數(shù);14.正三棱柱的側(cè)面展開圖是邊長為6和12的矩形,則該正三棱柱的體積是_____.15.在正方形ABCD中,E是線段CD的中點,若,則________.16.已知函數(shù),若方程有四個不同的解,且,則的最小值是______,的最大值是______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,以軸的非負半軸為始邊作角與,它們的終邊分別與單位圓相交于點,已知點的橫坐標為(1)求的值;(2)若,求的值18.已知是定義在上的奇函數(shù).(1)求實數(shù)和的值;(2)根據(jù)單調(diào)性的定義證明:在定義域上為增函數(shù).19.已知角的頂點與坐標原點重合,始邊與x軸的非負半軸重合,終邊過點(1)求的值;(2)若,求的值20.運貨卡車以千米/時的速度勻速行駛300千米,按交通法規(guī)限制(單位千米/時),假設汽車每小時耗油費用為元,司機的工資是每小時元.(不考慮其他因所素產(chǎn)生的費用)(1)求這次行車總費用(元)關于(千米/時)的表達式;(2)當為何值時,這次行車的總費用最低?求出最低費用的值21.(1)當,求的值;(2)設,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】函數(shù)有四個零點,即與圖象有4個不同交點,可設四個交點橫坐標滿足,由圖象,結(jié)合對數(shù)函數(shù)的性質(zhì),進一步求得,利用對稱性得到,從而可得結(jié)果.【詳解】作出函數(shù)的圖象如圖,函數(shù)有四個零點,即與的圖象有4個不同交點,不妨設四個交點橫坐標滿足,則,,,可得,由,得,則,可得,即,,故選C.【點睛】函數(shù)的性質(zhì)問題以及函數(shù)零點問題是高考的高頻考點,考生需要對初高中階段學習的十幾種初等函數(shù)的單調(diào)性、奇偶性、周期性以及對稱性非常熟悉;另外,函數(shù)零點的幾種等價形式:函數(shù)的零點函數(shù)在軸的交點方程的根函數(shù)與的交點.2、B【解析】利用兩直線垂直的充要條件即得.【詳解】∵直線:和直線:互相垂直,∴,即.故選:B.3、B【解析】先利用圖像求出函數(shù)的解析式,在對四個選項,利用圖像變換一一驗證即可.【詳解】由圖像可知:,所以,所以,解得:.所以.又圖像經(jīng)過,所以,解得:,所以對于A:把圖象上所有的點向左平移個單位長度,得到,再把所得圖象上所有點的橫坐標縮短到原來的,縱坐標不變得到.故A錯誤;對于B:把圖象上所有點向右平移個單位長度,得到,再把所得圖象上所有點的橫坐標伸長到原來的2倍,縱坐標不變.故B正確;對于C:把圖象上所有點向左平移個單位長度,得到,再把所得圖象上所有點的橫坐標縮短到原來的,縱坐標不變.故C錯誤;對于D:把圖象上所有的點向右平移個單位長度,得到,再把所得圖象上所有點的橫坐標伸長到原來的2倍,縱坐標不變得到.故D錯誤;故選:B4、C【解析】根據(jù)奇偶性的定義判斷即可;【詳解】解:因為函數(shù)是偶函數(shù),函數(shù)是奇函數(shù),所以、,對于A:令,則,故是非奇非偶函數(shù),故A錯誤;對于B:令,則,故為奇函數(shù),故B錯誤;對于C:令,則,故為偶函數(shù),故C正確;對于D:令,則,故為偶函數(shù),故D錯誤;故選:C5、B【解析】先求得,再根據(jù)余弦函數(shù)的周期性、奇偶性,判斷各個選項是否正確,從而得出結(jié)論【詳解】∵,∴=,∵,且T=,∴是最小正周期為偶函數(shù),故選B.【點睛】本題主要考查誘導公式,余弦函數(shù)的奇偶性、周期性,屬于基礎題6、D【解析】選項A為偶函數(shù),但在區(qū)間(0,+∞)上單調(diào)遞減;選項B,y=x3為奇函數(shù);選項C,y=cosx為偶函數(shù),但在區(qū)間(0,+∞)上沒有單調(diào)性;選項D滿足題意【詳解】選項A,y=ln為偶函數(shù),但在區(qū)間(0,+∞)上單調(diào)遞減,故錯誤;選項B,y=x3為奇函數(shù),故錯誤;選項C,y=cosx為偶函數(shù),但在區(qū)間(0,+∞)上沒有單調(diào)性,故錯誤;選項D,y=2|x|為偶函數(shù),當x>0時,解析式可化為y=2x,顯然滿足在區(qū)間(0,+∞)上單調(diào)遞增,故正確故選D【點睛】本題考查函數(shù)的奇偶性和單調(diào)性,屬于基礎題7、C【解析】設點為外接圓的圓心,根據(jù),得到是等邊三角形,求得外接圓的半徑r,再根據(jù)直三棱柱的頂點都在球上,由求得,直三棱柱的外接球的半徑即可.【詳解】如圖所示:設點為外接圓的圓心,因為,所以,又,所以等邊三角形,所以,又直三棱柱的頂點都在球上,所以外接球的半徑為,所以直三棱柱的外接球的表面積是,故選:C8、B【解析】化簡集合B,再求集合A,B的交集即可.【詳解】∵集合,集合,∴.故選:B.9、A【解析】如圖由題意點B關于所在直線的對稱點為B1,所以∠BOA=∠B1OA,所以又由平行四邊形法則知:,且向量的方向與向量的方向相同,由數(shù)量積的概念向量在向量方向上的投影是OM=,設與向量方向相同的單位向量為:,所以向量=2=2=,所以=.故選A.點睛:本題利用平行四邊形法則表示和向量,因為對稱,所以借助數(shù)量積定義中的投影及單位向量即可表示出和向量,解題時要善于借助圖像特征體現(xiàn)向量的工具作用.10、C【解析】根據(jù)的最值得出,根據(jù)周期得出,利用特殊點計算,從而得出的解析式,再計算.【詳解】由函數(shù)的最小值可知:,函數(shù)的周期:,則,當時,,據(jù)此可得:,令可得:,則函數(shù)的解析式為:,.故選:C.【點睛】本題考查了三角函數(shù)的圖象與性質(zhì),屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】解:因為tan22°+tan23°+tan22°tan23°=tan(22°+23°)(1-tan22°tan23°)+tan22°tan23°=tan45°=112、1【解析】結(jié)合圖象可得答案.【詳解】如圖,函數(shù)在同一坐標系中,且,所以在時有最小值,即.故答案為:1.13、②③【解析】利用函數(shù)中的定義結(jié)合函數(shù)的最值、周期以及單調(diào)性即可求解.【詳解】函數(shù),函數(shù)的最大值為小于,故①不正確;函數(shù)的最小值為,故②正確;函數(shù)每隔一個單位重復一次,所以函數(shù)有無數(shù)個零點,故③正確;由函數(shù)圖像,結(jié)合函數(shù)單調(diào)性定義可知,函數(shù)在定義域內(nèi)不單調(diào),故④不正確;故答案為:②③【點睛】本題考查的是取整函數(shù)問題,在解答時要充分理解的含義,注意對新函數(shù)的最值、單調(diào)性以及周期性加以分析,屬于基礎題.14、或【解析】分兩種情況來找三棱柱的底面積和高,再代入體積計算公式即可【詳解】因為正三棱柱的側(cè)面展開圖是邊長分別為6和12的矩形,所以有以下兩種情況,①6是下底面的周長,12是三棱柱的高,此時,下底面的邊長為2,面積為,所以正三棱柱的體積為12②12是下底面的周長,6是三棱柱的高,此時,下底面的邊長為4,面積為,所以正三棱柱的體積為24,故答案為或【點睛】本題的易錯點在于只求一種情況,應該注意考慮問題的全面性.分類討論是高中數(shù)學的??妓枷?,在運用分類討論思想做題時,要做到不重不漏15、【解析】詳解】由圖可知,,所以))所以,故,即,即得16、①.1②.4【解析】畫出的圖像,再數(shù)形結(jié)合分析參數(shù)的的最小值,再根據(jù)對稱性與函數(shù)的解析式判斷中的定量關系化簡再求最值即可.【詳解】畫出的圖像有:因為方程有四個不同的解,故的圖像與有四個不同的交點,又由圖,,故的取值范圍是,故的最小值是1.又由圖可知,,,故,故.故.又當時,.當時,,故.又在時為減函數(shù),故當時取最大值.故答案為:(1).1(2).4【點睛】本題主要考查了數(shù)形結(jié)合求解函數(shù)零點個數(shù)以及范圍的問題,需要根據(jù)題意分析交點間的關系,并結(jié)合函數(shù)的性質(zhì)求解.屬于難題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)三角函數(shù)的定義,求三角函數(shù),代入求值;(2)由條件可知,,利用誘導公式,結(jié)合三角函數(shù)的定義,求函數(shù)值.【小問1詳解】的橫坐標為,.【小問2詳解】由題可得,,.18、(1);(2)見詳解2.【解析】(1)由可得,再求值.(2)設,作差與零比較.【小問1詳解】因為是定義在上的奇函數(shù),所以,,,【小問2詳解】設,則,,,,所以,,故在定義域上為增函數(shù).19、(1);(2)-2.【解析】(1)先利用三角函數(shù)的坐標定義求出,再利用誘導公式求解;(2)求出,再利用差角的正切公式求解.【小問1詳解】解:由于角的終邊過點,由三角函數(shù)的定義可得,則【小問2詳解】解:由已知得,則20、(1)(2)當時,這次行車的總費用最低,最低費用為元【解析】(1)先得到行車所用時間,再根據(jù)汽車每小時耗油費用和司機的工資求解;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023-2024學年新疆伊犁州伊寧十中七年級(上)第一次段考數(shù)學試卷
- 魯教版八年級數(shù)學上冊第四章圖形的平移與旋轉(zhuǎn)1第一課時平移的定義及性質(zhì)課件
- 蘇教版八年級生物上冊第5單元生物的多樣性第一節(jié)生命的誕生課件
- 七年級英語上冊重點短語總匯,語法總結(jié)
- 大學英語任務型口頭表達 課件 高淼 UNIT1 Speaking Ability-Unit 4 Narrative Speaking Tasks 敘述性口頭任務
- 湖北省武漢市2024年中考真題(含答案)
- 內(nèi)蒙古烏蘭浩特市第十三中學2024屆中考數(shù)學模擬試卷含解析
- 內(nèi)蒙古包頭市2023-2024學年中考數(shù)學模擬預測題含解析
- 云南省昆明市華東師范大學昆明實驗學校2024-2025學年九年級上學期期中考試英語試卷
- 八年級生物期中模擬卷(全解全析)(安徽專用)
- DB37-T 3657-2019地質(zhì)災害治理工程設計技術規(guī)范
- 加油站污染源及處理設施表
- (完整)仁愛重點初中英語單詞表(全)
- 沿海地區(qū)抗風性能檢測方案
- 新概念英語第二冊精講筆記
- 我國對外貿(mào)易現(xiàn)狀分析
- 患者告知制度
- 操場塑膠跑道和人工草坪施工方案
- 數(shù)學一年級上冊《期末考試試卷》含答案解析
- 初中語文復句的類型及常用關聯(lián)詞
- “漢字聽寫大賽”試卷
評論
0/150
提交評論