版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
貴州省六盤水市外國語學(xué)校2025屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點分別是橢圓的左、右焦點,點P在此橢圓上,,則的面積等于A. B.C. D.2.已知點P在拋物線上,點Q在圓上,則的最小值為()A. B.C. D.3.圓與圓公切線的條數(shù)為()A.1 B.2C.3 D.44.如圖,在棱長為1的正方體中,M是的中點,則點到平面MBD的距離是()A. B.C. D.5.?dāng)?shù)列滿足,則數(shù)列的前n項和為()A. B.C. D.6.若復(fù)數(shù)滿足,則復(fù)數(shù)對應(yīng)的點的軌跡圍成圖形的面積等于()A. B.C. D.7.設(shè)是等比數(shù)列,且,,則()A.12 B.24C.30 D.328.設(shè)函數(shù)在定義域內(nèi)可導(dǎo),的圖像如圖所示,則導(dǎo)函數(shù)的圖象可能為()A. B.C. D.9.命題“?x∈R,|x|+x2≥0”的否定是()A.?x∈R,|x|+x2<0 B.?x∈R,|x|+x2≤0C.?x0∈R,|x0|+<0 D.?x0∈R,|x0|+≥010.在長方體中,,,則異面直線與所成角的正弦值是()A. B.C. D.11.已知定義在上的函數(shù)的導(dǎo)函數(shù)為,且恒有,則下列不等式一定成立的是()A. B.C. D.12.設(shè),,,則下列不等式中一定成立的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知空間向量,則向量在坐標(biāo)平面上的投影向量是__________14.若拋物線上一點到軸的距離是4,則點到該拋物線焦點的距離是___________.15.不等式的解集是___________.16.若函數(shù)在(0,+∞)內(nèi)有且只有一個零點,則a的值為_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓O:與圓C:(1)在①,②這兩個條件中任選一個,填在下面的橫線上,并解答若______,判斷這兩個圓位置關(guān)系;(2)若,求直線被圓C截得的弦長注:若第(1)問選擇兩個條件分別作答,按第一個作答計分18.(12分)已知橢圓E的中心在坐標(biāo)原點,焦點在坐標(biāo)軸上,且經(jīng)過,,三點,求橢圓E的標(biāo)準(zhǔn)方程19.(12分)已知直線,圓.(1)若l與圓C相切,求切點坐標(biāo);(2)若l與圓C交于A,B,且,求的面積.20.(12分)已知數(shù)列是正項數(shù)列,,且.(1)求數(shù)列的通項公式;(2)設(shè),數(shù)列的前項和為,若對恒成立,求實數(shù)的取值范圍.21.(12分)已知橢圓的離心率,過橢圓C的焦點且垂直于x軸的直線截橢圓所得到的線段的長度為1(1)求橢圓C的方程;(2)直線交橢圓C于A、B兩點,若y軸上存在點P,使得是以AB為斜邊的等腰直角三角形,求的面積的取值范圍22.(10分)甲、乙等6個班級參加學(xué)校組織廣播操比賽,若采用抽簽的方式隨機(jī)確定各班級的出場順序(序號為1,2,…,6),求:(1)甲、乙兩班級的出場序號中至少有一個為奇數(shù)的概率;(2)甲、乙兩班級之間的演出班級(不含甲乙)個數(shù)X的分布列與期望
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)橢圓標(biāo)準(zhǔn)方程,可得,結(jié)合定義及余弦定理可求得值,由及三角形面積公式即可求解.【詳解】橢圓則,所以,則由余弦定理可知代入化簡可得,則,故選:B.【點睛】本題考查了橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì)的簡單應(yīng)用,正弦定理與余弦定理的簡單應(yīng)用,三角形面積公式的用法,屬于基礎(chǔ)題.2、C【解析】先計算拋物線上的點P到圓心距離的最小值,再減去半徑即可.【詳解】設(shè),由圓心,得,∴時,,∴故選:C.3、D【解析】分別求出圓和圓的圓心和半徑,判斷出兩圓的位置關(guān)系可得到公切線的條數(shù).【詳解】根據(jù)題意,圓即,其圓心為,半徑;圓即,其圓心為,半徑;兩圓的圓心距,所以兩圓相離,其公切線條數(shù)有4條;故選:D.4、A【解析】等體積法求解點到平面的距離.【詳解】連接,,則,,由勾股定理得:,,取BD中點E,連接ME,由三線合一得:ME⊥BD,則,故,設(shè)到平面MBD的距離是,則,解得:,故點到平面MBD的距離是.故選:A5、D【解析】利用等差數(shù)列的前n項和公式得到,進(jìn)而得到,利用裂項相消法求和.【詳解】依題意得:,,,故選:D6、D【解析】利用復(fù)數(shù)的幾何意義,即可判斷軌跡圖形,再求面積.【詳解】復(fù)數(shù)滿足,表示復(fù)數(shù)對應(yīng)的點的軌跡是以點為圓心,半徑為3的圓,所以圍成圖形的面積等于.故選:D7、D【解析】根據(jù)已知條件求得的值,再由可求得結(jié)果.【詳解】設(shè)等比數(shù)列的公比為,則,,因此,.故選:D.【點睛】本題主要考查等比數(shù)列基本量的計算,屬于基礎(chǔ)題8、D【解析】根據(jù)函數(shù)的單調(diào)性得到導(dǎo)數(shù)的正負(fù),從而得到函數(shù)的圖象.【詳解】由函數(shù)的圖象可知,當(dāng)時,單調(diào)遞增,則,所以A選項和C選項錯誤;當(dāng)時,先增,再減,然后再增,則先正,再負(fù),然后再正,所以B選項錯誤.故選:D.【點睛】本題主要考查函數(shù)的單調(diào)性和導(dǎo)數(shù)的關(guān)系,意在考查學(xué)生對該知識的掌握水平,屬于基礎(chǔ)題.一般地,函數(shù)在某個區(qū)間可導(dǎo),,則在這個區(qū)間是增函數(shù);函數(shù)在某個區(qū)間可導(dǎo),,則在這個區(qū)間是減函數(shù).9、C【解析】利用全稱命題的否定可得出結(jié)論.【詳解】由全稱命題的否定可知,命題“,”的否定是“,”.故選:C.10、C【解析】連接,可得,得到異面直線與所成角即為直線與所成角,設(shè),設(shè),求得的值,在中,利用余弦定理,即可求解.【詳解】如圖所示,連接,在正方體中,可得,所以異面直線與所成角即為直線與所成角,設(shè),由在長方體中,,,設(shè),可得,在直角中,可得,在中,可得,所以,因為,所以.故選:C.11、D【解析】構(gòu)造函數(shù),用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,即可求解.【詳解】根據(jù)題意,令,其中,則,∵,∴,∴在上為單調(diào)遞減函數(shù),∴,即,,則錯誤;,即,則錯誤;,即,則錯誤;,即,則正確;故選:.12、B【解析】利用特殊值法可判斷ACD的正誤,根據(jù)不等式的性質(zhì),可判斷B的正誤.【詳解】對于A中,令,,,,滿足,,但,故A錯誤;對于B中,因為,所以由不等式的可加性,可得,所以,故B正確;對于C中,令,,,,滿足,,但,故C錯誤;對于D中,令,,,,滿足,,但,故D錯誤故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)投影向量的知識求得正確答案.【詳解】空間向量在坐標(biāo)平面上的投影向量是.故答案為:14、5【解析】根據(jù)拋物線的定義知點P到焦點距離等于到準(zhǔn)線的距離即可求解.【詳解】因為拋物線方程為,所以準(zhǔn)線方程,所以點到準(zhǔn)線的距離為,故點到該拋物線焦點的距離.故答案為:15、##【解析】將分式不等式等價轉(zhuǎn)化為不等式組,求解即得.【詳解】原不等式等價于,解得,故答案為:.16、a=3【解析】對函數(shù)進(jìn)行求導(dǎo),分類討論函數(shù)單調(diào)性,根據(jù)單調(diào)性結(jié)合已知可以求出a的值.【詳解】∵函數(shù)在(0,+∞)內(nèi)有且只有一個零點,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①當(dāng)a≤0時,f′(x)=2x(3x﹣a)>0,函數(shù)f(x)在(0,+∞)上單調(diào)遞增,f(0)=1,f(x)在(0,+∞)上沒有零點,舍去;②當(dāng)a>0時,f′(x)=2x(3x﹣a)>0的解為x,∴f(x)在(0,)上遞減,在(,+∞)遞增,又f(x)只有一個零點,∴f()1=0,解得a=3故答案為:a=3【點睛】本題考查了利用導(dǎo)數(shù)研究已知函數(shù)的零點求參數(shù)取值問題,考查了分類討論和數(shù)學(xué)運(yùn)算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)選①:外離;選②:相切;(2)【解析】(1)不論選①還是選②,都要首先算出兩圓的圓心距,然后和兩圓的半徑之和或差進(jìn)行比較即可;(2)根據(jù)點到直線的距離公式,先計算圓心到直線的距離,然后利用圓心距、半徑、弦長的一半之間的關(guān)系求解.【小問1詳解】選①圓O的圓心為,半徑為l;圓C圓心為,半徑為因為兩圓的圓心距為,且兩圓的半徑之和為,所以兩圓外離選②圓O的圓心為,半徑為1.圓C的圓心為,半徑為2因為兩圓的圓心距為.且兩圓的半徑之和為,所以兩圓外切【小問2詳解】因為點C到直線的距離,所以直線被圓C截得的弦長為18、【解析】分橢圓的焦點在軸上與焦點在軸上,兩種情況討論,利用待定系數(shù)法求出橢圓方程;【詳解】解:(1)當(dāng)橢圓的焦點在軸上時,設(shè)其方程為(),則又點C在橢圓上,得,解得,所以橢圓E的方程為(2)當(dāng)橢圓的焦點在軸上時,設(shè)其方程為(),則又點C在橢圓上,得,解得,這與矛盾綜上可知,橢圓的方程為19、(1)(2)【解析】(1)求出直線的定點,再由定點在圓上得出切點坐標(biāo);(2)由(1)知,證明為直角三角形,求出,,最后由三角形的面積公式求出的面積.【詳解】(1)圓可化為直線可化為,由解得即直線過定點,由于,則點在圓上因為l與圓C相切,所以切點坐標(biāo)為(2)因為l與圓C交于A,B,所以點如下圖所示,與相交于點,由以及圓的對稱性可知,點為的中點,且由,則直線的方程為圓心到直線的距離為,即直線與圓相切即,則因為,所以【點睛】關(guān)鍵點睛:在第一問中,關(guān)鍵是先確定直線過定點,再由定點在圓上,從而確定切點的坐標(biāo).20、(1)(2)【解析】(1)由條件因式分解可得,從而得到,即可得出答案.(2)由(1)可得,由錯位相減法求和得到,由題意即即對恒成立,分析數(shù)列的單調(diào)性,得出答案.【小問1詳解】由,得∵∴∴∴數(shù)列是公比為2的等比數(shù)列.∵,∴.【小問2詳解】由(1)知,∴∴①∴②①-②得∴∴由對恒成立得對恒成立即對恒成立,又是遞減數(shù)列∴時得到最大值∴,即∴的取值范圍是.21、(1)(2)【解析】(1)由條件可得,解出即可;(2)設(shè),,取AB的中點,聯(lián)立直線與橢圓的方程消元,算出,,然后可算出,然后由可得,然后表示出的面積可得答案.小問1詳解】令,得,所以,解得,,所以橢圓C的方程:【小問2詳解】設(shè),,取AB的中點,因為為以AB為斜邊的等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023-2024學(xué)年新疆伊犁州伊寧十中七年級(上)第一次段考數(shù)學(xué)試卷
- 魯教版八年級數(shù)學(xué)上冊第四章圖形的平移與旋轉(zhuǎn)1第一課時平移的定義及性質(zhì)課件
- 蘇教版八年級生物上冊第5單元生物的多樣性第一節(jié)生命的誕生課件
- 七年級英語上冊重點短語總匯,語法總結(jié)
- 大學(xué)英語任務(wù)型口頭表達(dá) 課件 高淼 UNIT1 Speaking Ability-Unit 4 Narrative Speaking Tasks 敘述性口頭任務(wù)
- 湖北省武漢市2024年中考真題(含答案)
- 內(nèi)蒙古烏蘭浩特市第十三中學(xué)2024屆中考數(shù)學(xué)模擬試卷含解析
- 內(nèi)蒙古包頭市2023-2024學(xué)年中考數(shù)學(xué)模擬預(yù)測題含解析
- 云南省昆明市華東師范大學(xué)昆明實驗學(xué)校2024-2025學(xué)年九年級上學(xué)期期中考試英語試卷
- 八年級生物期中模擬卷(全解全析)(安徽專用)
- 2024年4月自考00840第二外語(日語)試題
- 校園防霸凌AI系統(tǒng)
- 聚丙烯知識簡介課件
- 鎖骨骨折術(shù)后康復(fù)
- 學(xué)校綠化養(yǎng)護(hù)方案及養(yǎng)護(hù)計劃
- 戰(zhàn)略拆解的三場核心會議
- 初中生計劃與目標(biāo)
- 《原始人的創(chuàng)造》ppt
- 河道管理條例培訓(xùn)課件
- 企業(yè)如何應(yīng)對政治和地緣風(fēng)險
- 《數(shù)字電子技術(shù)基礎(chǔ) 第4版》 課件 第 3、4 章 組合邏輯電路、鎖存器和觸發(fā)器(第4版)
評論
0/150
提交評論