廣東省清遠市陽山縣陽山中學2025屆高二上數(shù)學期末檢測模擬試題含解析_第1頁
廣東省清遠市陽山縣陽山中學2025屆高二上數(shù)學期末檢測模擬試題含解析_第2頁
廣東省清遠市陽山縣陽山中學2025屆高二上數(shù)學期末檢測模擬試題含解析_第3頁
廣東省清遠市陽山縣陽山中學2025屆高二上數(shù)學期末檢測模擬試題含解析_第4頁
廣東省清遠市陽山縣陽山中學2025屆高二上數(shù)學期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省清遠市陽山縣陽山中學2025屆高二上數(shù)學期末檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等腰中,在線段斜邊上任取一點,則線段的長度大于的長度的概率()A. B.C. D.2.雙曲線:的左、右焦點分別為、,過的直線與y軸交于點A、與雙曲線右支交于點B,若為等邊三角形,則雙曲線C的離心率為()A. B.C.2 D.3.設(shè),則“”是“直線與直線平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件4.已知、是橢圓的兩個焦點,P為橢圓C上一點,且,若的面積為9,則的值為()A.1 B.2C.3 D.45.已知直線和圓,則“”是“直線與圓相切”的().A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件6.我們知道∶用平行于圓錐母線的平面(不過頂點)截圓錐,則平面與圓錐側(cè)面的交線是拋物線一部分,如圖,在底面半徑和高均為2的圓錐中,AB、CD是底面圓O的兩條互相垂直的直徑,E是母線PB的中點,已知過CD與E的平面與圓錐側(cè)面的交線是以E為頂點的圓錐曲線的一部分,則該圓錐曲線的焦點到其準線的距離等于()A. B.C. D.17.某學生2021年共參加10次數(shù)學競賽模擬考試,成績分別記為,,,…,,為研究該生成績的起伏變化程度,選用一下哪個數(shù)字特征最為合適()A.,,,…,的平均值; B.,,,…,的標準差;C.,,,…,的中位數(shù); D.,,,…,的眾數(shù);8.過橢圓+=1左焦點F1引直線交橢圓于A、B兩點,F(xiàn)2是橢圓的右焦點,則△ABF2的周長是()A.20 B.18C.10 D.169.,則()A. B.C. D.10.設(shè)P為橢圓C:上一點,,分別為左、右焦點,且,則()A. B.C. D.11.某公司要建造一個長方體狀的無蓋箱子,其容積為48m3,高為3m,如果箱底每1m2的造價為15元,箱壁每1m2造價為12元,則箱子的最低總造價為()A.72元 B.300元C.512元 D.816元12.已知公差不為0的等差數(shù)列中,,且,,成等比數(shù)列,則其前項和取得最大值時,的值為()A.12 B.13C.12或13 D.13或14二、填空題:本題共4小題,每小題5分,共20分。13.當曲線與直線有兩個不同的交點時,實數(shù)k的取值范圍是____________14.直線與曲線有且僅有一個公共點.則b的取值范圍是__________15.已知點P是橢圓上的一點,點,則的最小值為____________.16.如圖,PD垂直于正方形ABCD所在平面,AB=2,E為PB的中點,cos〈,〉=,若以DA,DC,DP所在直線分別為x,y,z軸建立空間直角坐標系,則點E的坐標為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知點,(1)若過點P作的切線只有一條,求實數(shù)的值及切線方程;(2)過點P作斜率為1的直線l與相交于M,N兩點,當面積最大時,求實數(shù)的值18.(12分)已知:,有,:方程表示經(jīng)過第二、三象限的拋物線,.(1)若是真命題,求實數(shù)的取值范圍;(2)若“”是假命題,“”是真命題,求實數(shù)的取值范圍.19.(12分)設(shè){an}是公比為正數(shù)的等比數(shù)列a1=2,a3=a2+4(Ⅰ)求{an}的通項公式;(Ⅱ)設(shè){bn}是首項為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項和Sn20.(12分)已知雙曲線C:(a>0,b>0)的離心率為,實軸長為2.(1)求雙曲線的焦點到漸近線的距離;(2)若直線y=x+m被雙曲線C截得的弦長為,求m的值.21.(12分)已知函數(shù)f(x)=x-mlnx-m.(1)討論函數(shù)f(x)的單調(diào)性;(2)若函數(shù)f(x)有最小值g(m),證明:g(m)在上恒成立.22.(10分)已知等比數(shù)列的公比,且,的等差中項為5,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用幾何概型的長度比值,即可計算.【詳解】設(shè)直角邊長,斜邊,則線段的長度大于的長度的概率.故選:C2、B【解析】由雙曲線的定義知,,又為等邊三角形,所以,由對稱性有,所以,在直角三角形中,求出,在三角形中,由余弦定理求出,從而即可求解.【詳解】解:由雙曲線的定義知,,又為等邊三角形,所以,由對稱性有,所以,在直角三角形中,,在三角形中,由余弦定理有,所以,解得,所以雙曲線C的離心率,故選:B.3、A【解析】根據(jù)兩直線平行的充要條件求出a的值,然后可判斷.【詳解】當時,,所以兩直線平行;若兩直線平行,則且,解得或,所以,“”是“直線與直線平行”的充分不必要條件.故選:A4、C【解析】根據(jù)橢圓定義,和條件列式,再通過變形計算求解.【詳解】由條件可知,,即,解得:.故選:C【點睛】本題考查橢圓的定義,焦點三角形的性質(zhì),重點考查轉(zhuǎn)化與變形,計算能力,屬于基礎(chǔ)題型.5、B【解析】首先求出直線與圓相切時的取值,再根據(jù)充分必要條件的定義判斷.【詳解】若直線與圓相切,則圓心到直線的距離,則,解得,所以“”是“直線與圓相切”的充分不必要條件.故選:B【點睛】本題考查直線與圓的位置關(guān)系,充分必要條件,重點考查計算,理解能力,屬于基礎(chǔ)題型.6、C【解析】由圓錐的底面半徑和高及E的位置可得,建立適當?shù)钠矫嬷苯亲鴺讼?,可得C的坐標,設(shè)拋物線的方程,將C的坐標代入求出拋物線的方程,進而可得焦點到其準線的距離【詳解】設(shè)AB,CD的交點為,連接PO,由題意可得PO⊥面AB,所以PO⊥OB,由題意OB=OP=OC=2,因為E是母線PB的中點,所以,由題意建立適當?shù)淖鴺讼担訠P為y軸以O(shè)E為x軸,E為坐標原點,如圖所示∶可得∶,設(shè)拋物線的方程為y2=mx,將C點坐標代入可得,所以,所以拋物線的方程為∶,所以焦點坐標為,準線方程為,所以焦點到其準線的距離為故選:C7、B【解析】根據(jù)平均數(shù)、標準差、中位數(shù)及眾數(shù)的概念即得.【詳解】根據(jù)平均數(shù)、中位數(shù)、眾數(shù)的概念可知,平均數(shù)、中位數(shù)、眾數(shù)描述數(shù)據(jù)的集中趨勢,標準差描述數(shù)據(jù)的波動大小估計數(shù)據(jù)的穩(wěn)定程度.故選:B.8、A【解析】根據(jù)橢圓的定義求得正確選項.【詳解】依題意,根據(jù)橢圓的定義可知,三角形的周長為.故選:A9、B【解析】求出,然后可得答案.【詳解】,所以故選:B10、B【解析】根據(jù)橢圓的定義寫出,再根據(jù)條件即可解得答案.【詳解】根據(jù)P為橢圓C:上一點,則有,又,所以,故選:B.11、D【解析】設(shè)這個箱子的箱底的長為xm,則寬為m,設(shè)箱子總造價為f(x)元,則f(x)=72(x)+240,由此利用均值不等式能求出箱子的最低總造價【詳解】設(shè)這個箱子的箱底的長為xm,則寬為m,設(shè)箱子總造價為f(x)元,∴f(x)=15×16+12×3(2x)=72(x)+240≥144240=816,當且僅當x,即x=4時,f(x)取最小值816元故選:D12、C【解析】設(shè)等差數(shù)列的公差為q,根據(jù),,成等比數(shù)列,利用等比中項求得公差,再由等差數(shù)列前n項和公式求解.【詳解】設(shè)等差數(shù)列的公差為q,因為,且,,成等比數(shù)列,所以,解得,所以,所以當12或13時,取得最大值,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出直線恒過的定點,結(jié)合曲線的圖象,數(shù)形結(jié)合,找出臨界狀態(tài),即可求得的取值范圍.【詳解】因為,故可得,其表示圓心為,半徑為的圓的上半部分;因為,即,其表示過點,且斜率為的直線.在同一坐標系下作圖如下:不妨設(shè)點,直線斜率為,且過點與圓相切的直線斜率為數(shù)形結(jié)合可知:要使得曲線與直線有兩個不同的交點,只需即可.容易知:;不妨設(shè)過點與相切的直線方程為,則由直線與圓相切可得:,解得,故.故答案為:.14、或.【解析】根據(jù)曲線方程得曲線的軌跡是個半圓,數(shù)形結(jié)合分析得兩種情況:(1)直線與半圓相切有一個交點;(2)直線與半圓相交于一個點,綜合兩種情況可得答案.【詳解】由曲線,可得,表示以原點為圓心,半徑為的右半圓,是傾斜角為的直線與曲線有且只有一個公共點有兩種情況:(1)直線與半圓相切,根據(jù),所以,結(jié)合圖像可得;(2)直線與半圓的上半部分相交于一個交點,由圖可知.故答案為:或.【點睛】方法點睛:處理直線與圓位置關(guān)系時,若兩方程已知或圓心到直線的距離易表達,則用幾何法;若方程中含有參數(shù),或圓心到直線的距離的表達較繁瑣,則用代數(shù)法;如果或有限制,需要數(shù)形結(jié)合進行分析.15、【解析】設(shè),表示出,消去y,利用二次函數(shù)求最值即可.【詳解】設(shè),則.所以當x=1時,最小.故答案為:.16、(1,1,1)【解析】設(shè)PD=a,則D(0,0,0),A(2,0,0),B(2,2,0),P(0,0,a),E(1,1,),∴=(0,0,a),=(-1,1,)由cos〈,〉=,∴=a·,∴a=2.∴E的坐標為(1,1,1)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);當時,切線方程為;當時,切線方程為;(2)或【解析】(1)根據(jù)題意可知P在圓上,據(jù)此即可求t和切線方程;(2)的面積,則當面積最大時,.即,據(jù)此即可求出圓心O到直線l的距離,即可求出t的數(shù)值.【小問1詳解】由題意得點在上,∴,,①當時,切點,直線OP的斜率,切線斜率,切線方程為,即②當時,切點,直線OP的斜率,切線斜率,切線方程,即【小問2詳解】∵的面積,則當面積最大時,.即,則圓心O到直線l距離又直線,即,則,解之得或注:亦可設(shè)圓心O到直線l的距離為d,則的面積,當且僅當,即時取等號(下同)18、(1)(2)【解析】(1)將問題轉(zhuǎn)化為不等式對應的方程無解,進而根據(jù)根的判別式小于0,計算即可;(2)根據(jù)且、或命題的真假判斷命題p、q的真假,列出對應的不等式組,解之即可.【小問1詳解】由條件知,恒成立,只需的.解得.【小問2詳解】若為真命題,則,解得.若“”是假命題,“”是真命題,所以和一真一假若真假,則,解得.若假真,則,解得.綜上,實數(shù)的取值范圍是.19、(Ⅰ)an=2×2n﹣1=2n(Ⅱ)2n﹣12n+1﹣2+n2=2n+1+n2﹣2【解析】(Ⅰ)由{an}是公比為正數(shù)的等比數(shù)列,設(shè)其公比,然后利用a1=2,a3=a2+4可求得q,即可求得{an}的通項公式(Ⅱ)由{bn}是首項為1,公差為2的等差數(shù)列可求得bn=1+(n﹣1)×2=2n﹣1,然后利用等比數(shù)列與等差數(shù)列的前n項和公式即可求得數(shù)列{an+bn}的前n項和Sn解:(Ⅰ)∵設(shè){an}是公比為正數(shù)的等比數(shù)列∴設(shè)其公比為q,q>0∵a3=a2+4,a1=2∴2×q2="2×q+4"解得q=2或q=﹣1∵q>0∴q="2"∴{an}的通項公式為an=2×2n﹣1=2n(Ⅱ)∵{bn}是首項為1,公差為2的等差數(shù)列∴bn=1+(n﹣1)×2=2n﹣1∴數(shù)列{an+bn}的前n項和Sn=+=2n+1﹣2+n2=2n+1+n2﹣2點評:本題考查了等比數(shù)列的通項公式及數(shù)列的求和,注意題目條件的應用.在用等比數(shù)列的前n項和公式時注意辨析q是否為1,只要簡單數(shù)字運算時不出錯,問題可解,是個基礎(chǔ)題20、(1)(2)【解析】(1)根據(jù)已知計算雙曲線的基本量,得雙曲線焦點坐標及漸近線方程,再用點到直線距離公式得解.(2)直線方程代入雙曲線方程,得到關(guān)于的一元二次方程,運用韋達定理弦長公式列方程得解.【小問1詳解】雙曲線離心率為,實軸長為2,,,解得,,,所求雙曲線C的方程為;∴雙曲線C的焦點坐標為,漸近線方程為,即為,∴雙曲線焦點到漸近線的距離為.【小問2詳解】設(shè),,聯(lián)立,,,,,,解得21、(1)答案見解析(2)證明見解析【解析】(1)求出函數(shù)的導數(shù),討論其符號后可得函數(shù)的單調(diào)區(qū)間.(2)根據(jù)(1)的結(jié)論可得函數(shù)的最小值,再利用導數(shù)可證不等式.【小問1詳解】函數(shù)的定義域為,且,當時,在上恒成立,所以此時在上為增函數(shù),當時,由,解得,由,解得,所以在上為減函數(shù),在上為增函數(shù),綜

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論