2022人教版數(shù)學(xué)必修四三角函數(shù)知識(shí)點(diǎn)_第1頁(yè)
2022人教版數(shù)學(xué)必修四三角函數(shù)知識(shí)點(diǎn)_第2頁(yè)
2022人教版數(shù)學(xué)必修四三角函數(shù)知識(shí)點(diǎn)_第3頁(yè)
2022人教版數(shù)學(xué)必修四三角函數(shù)知識(shí)點(diǎn)_第4頁(yè)
2022人教版數(shù)學(xué)必修四三角函數(shù)知識(shí)點(diǎn)_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022人教版數(shù)學(xué)必修四三角函數(shù)知識(shí)點(diǎn)

三角函數(shù)是基本初等函數(shù)之一,是以角度(數(shù)學(xué)上最常用弧

度制,下同)為自變量,角度對(duì)應(yīng)任意角終邊與單位圓交點(diǎn)

坐標(biāo)或其比值為因變量的函數(shù)。下面是小編整理的人教版數(shù)

學(xué)必修四三角函數(shù)知識(shí)點(diǎn),僅供參考希望能夠幫助到大家。

人教版數(shù)學(xué)必修四三角函數(shù)知識(shí)點(diǎn)

三角函數(shù)常用公式

正弦函數(shù)sin0二y/r

余弦函數(shù)cos。=x/r

正切函數(shù)tan9=y/x

余切函數(shù)cot。=x/y

正割函數(shù)sec9=r/x

余割函數(shù)esc9=r/y

三倍角公式

sin3a=4sina?sin(n/3+a)sin(n/3-a)

cos3a=4cosa?cos(n/3+a)cos(n/3-a)

tan3a=tana?tan(兀/3+a)?tan(Ji/3-a)

三角和

sin(a+B+Y)=sina,cosB*cosY+cosa?sinB,cos

Y+cosa?cosB,sinY-sina?sin3,sinY

cos(a+B+Y)=cosa,cosB,cosV-cosa?sinB,sin

Y-sina?cosB,sinY-sina,sinB,cosY

tan(a+^+y)=(tana+tan+tanY-tana?tanBetan

Y)/(1-tana?tan0-tan3?tanY-tanY,tana)

兩角和差

cos(a+B)=cosa?cosB-sina,sinB

cos(a-B)=cosa?cosB+sina,sinB

sin(a±B)=sina?cos±cosa,sinB

tan(a+B)=(tana+tanB)/(「tana?tanB)

tan(a-B)二(tana-tanB)/(1+tana?tanB)

和差化積

sin9+sin。2sin[(9+6)/2]cos[(。-4)/2]

sin0-sin力2cos[(0+力)/2]sin[(。-0)/2]

cos0+cos02cos[(0+6)/2]cos[(0-4))/2]

cos0-cos力-2sin[(0+cb)/2]sin[(0-6)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

口訣:正加正,正在前,余加余,余并肩,正減正,余

在前,余減余,負(fù)正弦.

積化和差

sinasinB[cos(a-B)-cos(a+B)]/2

cosacosB[cos(a+B)+cos(a-3)]/2

sinacosB[sin(a+B)+sin(a-3)]/2

cosasin0=[sin(a+B)-sin(a-B)]/2

同角三角函數(shù)關(guān)系

倒數(shù)關(guān)系:tana,cota=1sina,csca=1cosa*sec

a=1

商的關(guān)系:sina/cosa二tana=seca/escacosa/sin

a=cota=csca/seca

平方關(guān)系:sin2(a)+cos2(a)=1

1+tan2(a)=sec2(a)1+cot2(a)=csc~2(a)

誘導(dǎo)公式

sin(-a)=-sina

cos(-a)=cosa

tan(一a)二一tana

sin(n/2-a)=cosa

cos(n/2-a)=sina

sin(n/2+a)=cosa

cos(n/2+a)=-sina

sin(n-a)=sina

cos(Ji-a)=-cosa

sin(n+a)=-sina

cos(Ji+a)=-cosa

tanA=sinA/cosA

tan(n/2+a)=-cota

tan(n/2-a)=cota

tan(n-a)二一tana

tan(n+a)=tana

倍角公式

Sin2A=2SinA?CosA

Cos2A=CosA"2-SinA"2=l-2SinA"2=2CosA"2-l

tan2A=(2tanA)/(1-tanA2)

(注:SinA^2是sinA的平方sin2(A))

半角公式

sin(a/2)=±V((1-cosa)/2)

cos(a/2)=±V((1+cosa)/2)

tan(a/2)二±V((l-cosa)/(1+cosa))二sina/(1+cos

a)=(1-cosa)/sina

降原公式

sin"2(a)=(l-cos(2a))/2二versin(2a)/2

cos2(a)=(1+cos(2a))/2二vercos(2a)/2

tarT2(a)二(-cos(2a))/(1+cos(2a))

輔助角公式

Asina+Bcosa=(A2+B2)"(1/2)sin(a+t),其中

sint=B/(A^2+B^2)71/2)

cost=A/(A^2+B^2)71/2)

數(shù)學(xué)學(xué)習(xí)方法總結(jié)

課前認(rèn)真預(yù)習(xí).預(yù)習(xí)的目的是為了能更好得聽(tīng)老師講課,

通過(guò)預(yù)習(xí),掌握度要達(dá)到百分之八十.帶著預(yù)習(xí)中不明白的

問(wèn)題去聽(tīng)老師講課,來(lái)解答這類(lèi)的問(wèn)題.預(yù)習(xí)還可以使聽(tīng)課

的整體效率提高.具體的預(yù)習(xí)方法:將書(shū)上的題目做完,畫(huà)

出知識(shí)點(diǎn),整個(gè)過(guò)程大約持續(xù)15-20分鐘.在時(shí)間允許的情

況下,還可以將練習(xí)冊(cè)做完.

讓數(shù)學(xué)課學(xué)與練結(jié)合.在數(shù)學(xué)課上,光聽(tīng)是沒(méi)用的.當(dāng)老

師讓同學(xué)去黑板上演算時(shí),自己也要在草稿紙上練.如果遇

到不懂的難題,一定要提出來(lái),不能不求甚解.否則考試遇

到類(lèi)似的題目就可能不會(huì)做.聽(tīng)老師講課時(shí)一定要全神貫注,

要注意細(xì)節(jié)問(wèn)題,否則“千里之堤,毀于蟻穴”.

課后及時(shí)復(fù)習(xí).寫(xiě)完作業(yè)后對(duì)當(dāng)天老師講的內(nèi)容進(jìn)行梳

理,可以適當(dāng)?shù)刈?5分鐘左右的課外題.可以根據(jù)自己的需

要選擇適合自己的課外書(shū).其課外題內(nèi)容大概就是今天上的

課.

數(shù)學(xué)直線、平面、簡(jiǎn)單多面體知識(shí)點(diǎn)

1.計(jì)算異面直線所成角的關(guān)鍵是平移(補(bǔ)形)轉(zhuǎn)化為兩直

線的夾角計(jì)算

2.計(jì)算直線與平面所成的角關(guān)鍵是作面的垂線找射影,

或向量法(直線上向量與平面法向量夾角的余角),三余弦公

式(最小角定理),或先運(yùn)用等積法求點(diǎn)到直線的距離,后虛

擬直角三角形求解.注:一斜線與平面上以斜足為頂點(diǎn)的角

的兩邊所成角相等

斜線在平面上射影為角的平分線.

3.空間平行垂直關(guān)系的證明,主要依據(jù)相關(guān)定義、公理、

定理和空間向量進(jìn)行,請(qǐng)重視線面平行關(guān)系、線面垂直關(guān)系

(三垂線定理及其逆定理)的橋梁作用.注意:書(shū)寫(xiě)證明過(guò)程

需規(guī)范.

4.直棱柱、正棱柱、平行六面體、長(zhǎng)方體、正方體、正

四面體、棱錐、正棱錐關(guān)于側(cè)棱、側(cè)面、對(duì)角面、平行于底

的截面的幾何體性質(zhì).

如長(zhǎng)方體中:對(duì)角線長(zhǎng),棱長(zhǎng)總和為,全(表)面積為,(結(jié)

合可得關(guān)于他們的等量關(guān)系,結(jié)合基本不等式還可建立關(guān)于

他們的不等關(guān)系式),

如三棱錐中:側(cè)棱長(zhǎng)相等(側(cè)棱與底面所成角相等)頂點(diǎn)

在底上射影為底面外心,側(cè)棱兩兩垂直(兩對(duì)對(duì)棱垂直)頂點(diǎn)

在底上射影為底面垂心,斜高長(zhǎng)相等(側(cè)面與底面所成相等)

且頂點(diǎn)在底上在底面內(nèi)頂點(diǎn)在底上射影為底面內(nèi)心.

5,求幾何體體積的常規(guī)方法是:公式法、割補(bǔ)法、等積(轉(zhuǎn)

換)法、比例(性質(zhì)轉(zhuǎn)換)法等.注意:補(bǔ)形:三棱錐三棱柱平

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論