版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第三章?tīng)I(yíng)銷(xiāo)數(shù)據(jù)采集MARKETING數(shù)字營(yíng)銷(xiāo)學(xué)黃勁松教授/博士生導(dǎo)師Contents目錄第一節(jié)
營(yíng)銷(xiāo)數(shù)據(jù)概述第二節(jié)
營(yíng)銷(xiāo)數(shù)據(jù)的類(lèi)型第三節(jié)
大數(shù)據(jù)采集技術(shù)第四節(jié)營(yíng)銷(xiāo)數(shù)據(jù)管理Contents目錄第一節(jié)
營(yíng)銷(xiāo)數(shù)據(jù)概述第二節(jié)
營(yíng)銷(xiāo)數(shù)據(jù)的類(lèi)型第三節(jié)
大數(shù)據(jù)采集技術(shù)第四節(jié)營(yíng)銷(xiāo)數(shù)據(jù)管理一、營(yíng)銷(xiāo)數(shù)據(jù)及其特點(diǎn)1.營(yíng)銷(xiāo)數(shù)據(jù)的定義
營(yíng)銷(xiāo)數(shù)據(jù)是企業(yè)可以用于洞察市場(chǎng)、確定定位、傳播信息、銷(xiāo)售產(chǎn)品、管理顧客的各類(lèi)數(shù)據(jù)。一、營(yíng)銷(xiāo)數(shù)據(jù)及其特點(diǎn)2.營(yíng)銷(xiāo)數(shù)據(jù)特點(diǎn)
來(lái)源豐富性
類(lèi)型復(fù)雜性
目標(biāo)多樣性
應(yīng)用廣泛性
方法匯聚性目標(biāo)多樣
數(shù)據(jù)
類(lèi)型應(yīng)用廣泛來(lái)源豐富方法匯聚二、營(yíng)銷(xiāo)數(shù)據(jù)的類(lèi)型Contents目錄第一節(jié)
營(yíng)銷(xiāo)數(shù)據(jù)概述第二節(jié)
營(yíng)銷(xiāo)數(shù)據(jù)的類(lèi)型第三節(jié)
大數(shù)據(jù)采集技術(shù)第四節(jié)營(yíng)銷(xiāo)數(shù)據(jù)管理(一)銷(xiāo)售數(shù)據(jù)企業(yè)在日常的經(jīng)營(yíng)過(guò)程中,業(yè)務(wù)應(yīng)用產(chǎn)生了不同類(lèi)型的數(shù)據(jù),這些數(shù)據(jù)也幫助企業(yè)做出不同場(chǎng)景的決策。例如:銷(xiāo)售訂單數(shù)據(jù)、渠道存貨數(shù)據(jù)、價(jià)格變化信息等一、企業(yè)內(nèi)部經(jīng)營(yíng)數(shù)據(jù)(二)產(chǎn)品數(shù)據(jù)產(chǎn)品數(shù)據(jù)包括產(chǎn)品名稱(chēng)、產(chǎn)品類(lèi)別、產(chǎn)品屬性、產(chǎn)品配置、生產(chǎn)成本、供應(yīng)商等等。產(chǎn)品數(shù)據(jù)還包括與產(chǎn)品相關(guān)的過(guò)程數(shù)據(jù),例如加工工序、加工指南、工作流程、產(chǎn)品圖樣、數(shù)據(jù)模型、設(shè)備數(shù)據(jù)、技術(shù)文件、工裝數(shù)據(jù)等。一、企業(yè)內(nèi)部經(jīng)營(yíng)數(shù)據(jù)(三)顧客數(shù)據(jù)1.顧客基本信息:指顧客的基本屬性和基本資料信息,通常的信息包括姓名、生日、性別、民族、聯(lián)系信息、地理信息和人口統(tǒng)計(jì)信息等。2.顧客行為數(shù)據(jù):指顧客購(gòu)買(mǎi)數(shù)據(jù)、顧客消費(fèi)數(shù)據(jù)、客戶(hù)關(guān)系管理數(shù)據(jù)等3.顧客關(guān)聯(lián)數(shù)據(jù):指反映和影響顧客行為和心理的關(guān)聯(lián)信息。一、企業(yè)內(nèi)部經(jīng)營(yíng)數(shù)據(jù)(四)營(yíng)銷(xiāo)活動(dòng)數(shù)據(jù)營(yíng)銷(xiāo)活動(dòng)指促銷(xiāo)活動(dòng)、福利發(fā)放、創(chuàng)意參與、公共關(guān)系等活動(dòng),它能夠增加顧客、提高營(yíng)收或提升品牌知名度。常見(jiàn)的營(yíng)銷(xiāo)活動(dòng)數(shù)據(jù)包括營(yíng)銷(xiāo)活動(dòng)推廣數(shù)據(jù)、活動(dòng)的總收入(GMV)、不同產(chǎn)品的銷(xiāo)售數(shù)據(jù)、獲得新顧客的數(shù)據(jù)等。一、企業(yè)內(nèi)部經(jīng)營(yíng)數(shù)據(jù)(一)訪談數(shù)據(jù)訪談數(shù)據(jù)是在一定的調(diào)研目的下,通過(guò)對(duì)個(gè)人或小組的問(wèn)答或談話獲得的數(shù)據(jù),這類(lèi)數(shù)據(jù)一般展現(xiàn)了被訪者的觀點(diǎn)、看法和思路。二、定性研究小數(shù)據(jù)訪談包括:
結(jié)構(gòu)化訪談
無(wú)結(jié)構(gòu)化訪談
半結(jié)構(gòu)化訪談(二)焦點(diǎn)組訪談數(shù)據(jù)焦點(diǎn)組(focusgroup)訪談也稱(chēng)專(zhuān)題座談,它是對(duì)多人組成的小組進(jìn)行焦點(diǎn)問(wèn)題的訪談或小組討論。焦點(diǎn)組訪談參加人數(shù)一般是6-15人。很多焦點(diǎn)組訪談是在單面鏡房間中完成的,有完整的錄音錄像和單面鏡房間的觀察,便于后期的數(shù)據(jù)分析。二、定性研究小數(shù)據(jù)(三)定性資料數(shù)據(jù)定性資料指以文字、聲音、圖片、視頻或其他記錄符號(hào)描述或表達(dá)社會(huì)生活中的人物、行為、態(tài)度,以及各種社會(huì)生活事件的資料。定性資料在通過(guò)編碼和訓(xùn)練之后,形成定性資料數(shù)據(jù)。二、定性研究小數(shù)據(jù)(四)其他定性研究數(shù)據(jù)在定性研究中,研究者獲取數(shù)據(jù)的方式分為參與式數(shù)據(jù)采集和非參與式數(shù)據(jù)采集。參與式數(shù)據(jù)采集是指研究者參與到被研究者的社區(qū)或團(tuán)體之中,通過(guò)觀察、感受、交流等方式獲得數(shù)據(jù),典型的方法是民族志。非參與式的數(shù)據(jù)采集是研究者通過(guò)訪談、座談、文本分析等方法獲得數(shù)據(jù),典型的方法是個(gè)案研究。二、定性研究小數(shù)據(jù)(一)問(wèn)卷調(diào)查數(shù)據(jù)問(wèn)卷調(diào)查法是指調(diào)研人員事先擬好調(diào)查問(wèn)卷,以書(shū)面、郵件或電話等不同形式對(duì)被調(diào)查者提出問(wèn)題,要求其給與回答,由此獲得所需調(diào)查材料的調(diào)查方法。常用的調(diào)查方法有電話訪談、人員面訪、郵寄訪問(wèn)、電子訪問(wèn)以及留置問(wèn)卷調(diào)查訪問(wèn)。三、調(diào)研小數(shù)據(jù)(1/2)(二)觀察法觀察法是指調(diào)查人員根據(jù)一定的研究目的、研究提綱,用自己的感官和攝像器材等輔助工具在調(diào)查現(xiàn)場(chǎng)直接觀察用戶(hù)和記錄正在發(fā)生的市場(chǎng)行為狀況的一種有效的收集資料數(shù)據(jù)的方法。觀察調(diào)查是調(diào)查者對(duì)發(fā)生的情景不加控制和干擾,在自然條件下發(fā)生的感知活動(dòng),也是有目的、有計(jì)劃、有系統(tǒng)的感知活動(dòng)。三、調(diào)研小數(shù)據(jù)(2/2)(一)實(shí)驗(yàn)室實(shí)驗(yàn)實(shí)驗(yàn)室實(shí)驗(yàn)法通常指在實(shí)驗(yàn)室內(nèi)嚴(yán)格控制實(shí)驗(yàn)條件,分組測(cè)量給定刺激是否引發(fā)一定的行為反應(yīng)。實(shí)驗(yàn)室實(shí)驗(yàn)在實(shí)施時(shí)一般分為實(shí)驗(yàn)組和參照組,實(shí)驗(yàn)結(jié)果是對(duì)照兩組結(jié)果,從而判斷實(shí)驗(yàn)刺激是否產(chǎn)生顯著作用。四、實(shí)驗(yàn)數(shù)據(jù)(二)田野實(shí)驗(yàn)數(shù)據(jù)田野實(shí)驗(yàn)數(shù)據(jù)是通過(guò)田野實(shí)驗(yàn)獲取的對(duì)不同刺激的市場(chǎng)反應(yīng)數(shù)據(jù)。田野實(shí)驗(yàn)(又稱(chēng)為實(shí)地實(shí)驗(yàn)、現(xiàn)場(chǎng)實(shí)驗(yàn))是在真實(shí)的市場(chǎng)環(huán)境下進(jìn)行的實(shí)驗(yàn),它結(jié)合了田野調(diào)查和實(shí)驗(yàn)研究?jī)煞N研究方法的優(yōu)點(diǎn),既考慮了實(shí)驗(yàn)結(jié)果的真實(shí)性,又考慮了對(duì)研究結(jié)果的因果推斷。四、實(shí)驗(yàn)數(shù)據(jù)(三)自然實(shí)驗(yàn)數(shù)據(jù)自然實(shí)驗(yàn)是指在自然的刺激或者其他非研究者控制的刺激下,被試產(chǎn)生市場(chǎng)反應(yīng)的一種實(shí)驗(yàn)方法。例如,典型的自然實(shí)驗(yàn)是某一政策出臺(tái)導(dǎo)致政策前后顧客行為產(chǎn)生了變化。自然實(shí)驗(yàn)數(shù)據(jù)是在自然實(shí)驗(yàn)中產(chǎn)生的各類(lèi)數(shù)據(jù),這些數(shù)據(jù)往往具有不可設(shè)計(jì)和不可重復(fù)的特點(diǎn)。四、實(shí)驗(yàn)數(shù)據(jù)(四)認(rèn)知神經(jīng)實(shí)驗(yàn)數(shù)據(jù)認(rèn)知神經(jīng)實(shí)驗(yàn)數(shù)據(jù)指在認(rèn)知神經(jīng)實(shí)驗(yàn)中通過(guò)眼動(dòng)、腦電、皮電、肌電等的設(shè)備獲得的測(cè)量數(shù)據(jù)。認(rèn)知神經(jīng)測(cè)量主要通過(guò)腦部的神經(jīng)元信號(hào)測(cè)試人們的認(rèn)知和情感,表征不同情感的神經(jīng)元信號(hào)出現(xiàn)在特定的腦區(qū)。四、實(shí)驗(yàn)數(shù)據(jù)例如,腹內(nèi)側(cè)前額葉皮質(zhì)是將情感納入決策的重要區(qū)域,它與廣告吸引力、產(chǎn)品偏好、品牌忠誠(chéng)等均有關(guān)。(一)商業(yè)情報(bào)數(shù)據(jù)商業(yè)情報(bào)數(shù)據(jù)分為公開(kāi)信息和非公開(kāi)信息兩類(lèi)。公開(kāi)信息主要來(lái)自于各類(lèi)政府公開(kāi)信息、公開(kāi)的出版物、知識(shí)數(shù)據(jù)庫(kù)和企業(yè)公開(kāi)信息等方面;五、商業(yè)數(shù)據(jù)非公開(kāi)信息主要來(lái)源于企業(yè)內(nèi)部關(guān)聯(lián)人士、相關(guān)利益攸關(guān)者和第三方咨詢(xún)服務(wù)提供者。(二)商業(yè)服務(wù)數(shù)據(jù)商業(yè)服務(wù)數(shù)據(jù)通常由第三方商業(yè)服務(wù)公司提供,這些公司一般會(huì)確定典型的市場(chǎng)研究方向,并以此為拓展展開(kāi)業(yè)務(wù)。公司名稱(chēng)典型研究領(lǐng)域上海AC尼爾森市場(chǎng)研究公司零售研究蓋洛特市場(chǎng)研究?jī)?yōu)先公司移動(dòng)通訊研究蓋洛普(中國(guó))咨詢(xún)有限公司民意測(cè)驗(yàn)和商業(yè)調(diào)查央視市場(chǎng)研究股份有限公司媒介調(diào)查益普索(中國(guó))市場(chǎng)研究咨詢(xún)有限公司廣告事前測(cè)試、滿(mǎn)意度和忠誠(chéng)度研究新力市場(chǎng)研究(DMBResearch)定性研究和廣告研究GFK(賽諾、科思瑞智)市場(chǎng)研究公司家電零售監(jiān)測(cè)北京零點(diǎn)研究集團(tuán)行業(yè)與產(chǎn)品研究、消費(fèi)文化研究、社會(huì)問(wèn)題研究新生代市場(chǎng)監(jiān)測(cè)機(jī)構(gòu)有限公司媒介監(jiān)測(cè)北京華夏盈聯(lián)市場(chǎng)咨詢(xún)有限公司滿(mǎn)意度調(diào)查、神秘顧客調(diào)查北京環(huán)亞市場(chǎng)研究社汽車(chē)行業(yè)研究深圳思緯市場(chǎng)資訊公司廣告測(cè)試研究等廣州市致聯(lián)市場(chǎng)研究有限公司醫(yī)藥行業(yè)研究典型的商業(yè)數(shù)據(jù)服務(wù)公司五、商業(yè)數(shù)據(jù)(三)商業(yè)數(shù)據(jù)庫(kù)數(shù)據(jù)商業(yè)數(shù)據(jù)庫(kù)數(shù)據(jù)包括面向大眾的公共數(shù)據(jù)庫(kù)數(shù)據(jù)和商業(yè)銷(xiāo)售的數(shù)據(jù)庫(kù)數(shù)據(jù)。面向大眾的公共數(shù)據(jù)包括政府部門(mén)和統(tǒng)計(jì)機(jī)構(gòu)、貿(mào)易和產(chǎn)業(yè)組織的公開(kāi)商業(yè)資料,商業(yè)期刊等,這些數(shù)據(jù)庫(kù)中包含宏觀經(jīng)濟(jì)數(shù)據(jù)、行業(yè)數(shù)據(jù)、期刊報(bào)刊數(shù)據(jù)等。五、商業(yè)數(shù)據(jù)向市場(chǎng)銷(xiāo)售的商業(yè)數(shù)據(jù)庫(kù)往往來(lái)自于企業(yè)的一些固定研究項(xiàng)目,例如顧客滿(mǎn)意指數(shù)調(diào)查、品牌價(jià)值研究等,這些研究項(xiàng)目所形成的數(shù)據(jù)庫(kù)將會(huì)定期發(fā)布并可以銷(xiāo)售和訂閱。(一)大數(shù)據(jù)的特點(diǎn)和類(lèi)型大數(shù)據(jù)類(lèi)型六、企業(yè)大數(shù)據(jù)“海量”是指數(shù)據(jù)量非常大且急速增長(zhǎng)“高速”是指數(shù)據(jù)產(chǎn)生的速度快“多樣”指數(shù)據(jù)格式、數(shù)據(jù)類(lèi)型復(fù)雜多樣“復(fù)雜性”是指數(shù)據(jù)源繁多“多變性”是指數(shù)據(jù)流不穩(wěn)定(二)企業(yè)經(jīng)營(yíng)產(chǎn)品的大數(shù)據(jù)六、企業(yè)大數(shù)據(jù)1.業(yè)務(wù)應(yīng)用數(shù)據(jù):(1)Web網(wǎng)站數(shù)據(jù)(2)App應(yīng)用數(shù)據(jù)2.互聯(lián)網(wǎng)數(shù)據(jù)(1)政府和行業(yè)數(shù)據(jù)(2)垂直平臺(tái)數(shù)據(jù)(3)社交數(shù)據(jù)3.物聯(lián)網(wǎng)數(shù)據(jù)4.系統(tǒng)日志數(shù)據(jù)5.合作伙伴數(shù)據(jù)企業(yè)經(jīng)營(yíng)中產(chǎn)生的大數(shù)據(jù)包括企業(yè)多場(chǎng)景數(shù)據(jù),例如業(yè)務(wù)應(yīng)用數(shù)據(jù)、互聯(lián)網(wǎng)數(shù)據(jù)、物聯(lián)網(wǎng)數(shù)據(jù)、系統(tǒng)日志數(shù)據(jù)以及合作伙伴數(shù)據(jù)等Contents目錄第一節(jié)
營(yíng)銷(xiāo)數(shù)據(jù)概述第二節(jié)
營(yíng)銷(xiāo)數(shù)據(jù)的類(lèi)型第三節(jié)
大數(shù)據(jù)采集技術(shù)第四節(jié)營(yíng)銷(xiāo)數(shù)據(jù)管理大數(shù)據(jù)采集是對(duì)數(shù)據(jù)進(jìn)行Extract-Transform-Load操作,通過(guò)對(duì)數(shù)據(jù)進(jìn)行提取、轉(zhuǎn)換、加載,最終挖掘數(shù)據(jù)的潛在價(jià)值。從數(shù)據(jù)源抽取出所需的數(shù)據(jù),經(jīng)過(guò)數(shù)據(jù)清洗,最終按照預(yù)先定義好的數(shù)據(jù)模型,將數(shù)據(jù)加載到數(shù)據(jù)倉(cāng)庫(kù)中去,最后對(duì)數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)進(jìn)行數(shù)據(jù)分析和處理。一、大數(shù)據(jù)采集概述數(shù)據(jù)采集方式描述典型公司PC機(jī)cookie采集通過(guò)分布式計(jì)算機(jī)進(jìn)行海量PC用戶(hù)的cookie采集。秒針PC應(yīng)用行為數(shù)據(jù)對(duì)PC應(yīng)用的行為進(jìn)行數(shù)據(jù)采集。搜狗拼音、360殺毒、華為運(yùn)動(dòng)網(wǎng)絡(luò)爬蟲(chóng)通過(guò)分布式網(wǎng)絡(luò)爬蟲(chóng)采集網(wǎng)上數(shù)據(jù)。針對(duì)微博的抓取最為普遍設(shè)備傳感器數(shù)據(jù)通過(guò)手機(jī)、機(jī)頂盒、新能源汽車(chē)等采集用戶(hù)的設(shè)備使用行為。蘋(píng)果、歌華、特斯拉、比亞迪交易行為數(shù)據(jù)通過(guò)分布式計(jì)算機(jī)進(jìn)行海量PC用戶(hù)的cookie采集。阿里巴巴、騰訊手機(jī)APP通過(guò)在APP中埋點(diǎn)的方式進(jìn)行用戶(hù)行為數(shù)據(jù)采集,也可以通過(guò)APP采集通訊錄、位置能數(shù)據(jù)。幾乎所有APP應(yīng)用電信運(yùn)營(yíng)商數(shù)據(jù)通過(guò)通信網(wǎng)絡(luò)采集用戶(hù)的行為,包括使用行為、位置、通話等。中國(guó)移動(dòng)、中國(guó)聯(lián)通操作系統(tǒng)通過(guò)通信網(wǎng)絡(luò)采集用戶(hù)的行為,包括App使用行為、位置、通話等等。微軟、安卓、IOS顧客關(guān)系系統(tǒng)通過(guò)社群、會(huì)員行為、社區(qū)行為、評(píng)論等采集數(shù)據(jù)。小米數(shù)據(jù)采集方式一覽一、大數(shù)據(jù)采集概述
(一)爬蟲(chóng)采集網(wǎng)絡(luò)爬蟲(chóng)又被稱(chēng)為網(wǎng)頁(yè)蜘蛛,網(wǎng)絡(luò)機(jī)器人,是一種按照一定的規(guī)則自動(dòng)化、系統(tǒng)化收集互聯(lián)網(wǎng)上相關(guān)數(shù)據(jù)的技術(shù)。大數(shù)據(jù)時(shí)代的今天,網(wǎng)絡(luò)爬蟲(chóng)是互聯(lián)網(wǎng)上采集數(shù)據(jù)的主要工具之一,通過(guò)網(wǎng)絡(luò)爬蟲(chóng)的方式可以獲取到網(wǎng)站上不同類(lèi)型的數(shù)據(jù)信息,包括文本、圖片、音頻、視頻等文件數(shù)據(jù)。二、互聯(lián)網(wǎng)線上數(shù)據(jù)采集
某爬蟲(chóng)采集工具(二)埋點(diǎn)采集(1)埋點(diǎn)的基本概念在技術(shù)實(shí)現(xiàn)上,線上數(shù)據(jù)采集主要通過(guò)埋點(diǎn)的方式實(shí)現(xiàn),通過(guò)不同應(yīng)用的SDK(SoftwareDevelopmentKit,軟件工具包)數(shù)據(jù)埋點(diǎn),將顧客端或服務(wù)端的數(shù)據(jù)上傳到數(shù)據(jù)服務(wù)器終端。二、互聯(lián)網(wǎng)線上數(shù)據(jù)采集
埋點(diǎn)是事件追蹤(EventTracking)的主要方式,針對(duì)特定用戶(hù)行為或事件進(jìn)行捕獲、處理和發(fā)送的相關(guān)技術(shù)及其實(shí)施過(guò)程。(二)埋點(diǎn)采集(2)埋點(diǎn)的方式
類(lèi)別代碼埋點(diǎn)全埋點(diǎn)可視化埋點(diǎn)服務(wù)端埋點(diǎn)采集說(shuō)明嵌入SDK,定義事件并添加好事件代碼嵌入SDK嵌入SDK,可視化圈選定義事件接口調(diào)用,數(shù)據(jù)結(jié)構(gòu)化場(chǎng)景以業(yè)務(wù)價(jià)值為出發(fā)點(diǎn)的行為分析無(wú)需采集事件,適用于活動(dòng)頁(yè)、著陸頁(yè)需要設(shè)計(jì)體驗(yàn)衡量用戶(hù)在頁(yè)面的行為與業(yè)務(wù)信息關(guān)聯(lián)較少,頁(yè)面較多且頁(yè)面元素較少對(duì)行為數(shù)據(jù)的應(yīng)用較為淺前后端數(shù)據(jù)整合,如訂單數(shù)據(jù)優(yōu)勢(shì)按需采集:業(yè)務(wù)信息更完善,對(duì)數(shù)據(jù)的分析更聚焦簡(jiǎn)單、快捷,與代碼埋點(diǎn)相比開(kāi)發(fā)人員工作量較少與代碼埋點(diǎn)相比,開(kāi)發(fā)人員工作量較少更靈活、更準(zhǔn)確、不需要發(fā)版本,數(shù)據(jù)上傳更加及時(shí)劣勢(shì)與后兩種采集方式相比,開(kāi)發(fā)人中工作量較多數(shù)據(jù)準(zhǔn)確性不高,上傳數(shù)據(jù)多,消耗量高數(shù)據(jù)維度單一(僅點(diǎn)擊、加載、刷新)業(yè)務(wù)人中工作量較大,改版后需要重新定義事件,缺乏基于業(yè)務(wù)的解讀僅服務(wù)端采集較少前端的環(huán)境信息,前端交互數(shù)據(jù)缺失典型案例友盟,百度統(tǒng)計(jì)GoogleanalyticsWMDA
二、互聯(lián)網(wǎng)線上數(shù)據(jù)采集
(二)埋點(diǎn)采集(3)埋點(diǎn)的設(shè)計(jì)Who:參與此事件的用戶(hù)When:事件發(fā)生的實(shí)際時(shí)間Where:事件發(fā)生的地點(diǎn)How:用戶(hù)進(jìn)行事件的方式What:描述用戶(hù)所做的事件的具體內(nèi)容記錄和收集用戶(hù)的長(zhǎng)期屬性通過(guò)ID與相關(guān)的Event關(guān)聯(lián)事件模型用戶(hù)
User事件Event二、互聯(lián)網(wǎng)線上數(shù)據(jù)采集
埋點(diǎn)的設(shè)計(jì)是將行為拆解為單個(gè)的點(diǎn)擊或?yàn)g覽動(dòng)作,將需要分析的目標(biāo)動(dòng)作抽象為“事件”。例如,事件分析模型是常用的分析模型之一。事件模型(Event模型)用來(lái)描述用戶(hù)的各種行為,包括事件(Event)和用戶(hù)(User)兩個(gè)核心實(shí)體。以某APP的事件設(shè)計(jì)為例,通常包括APP啟動(dòng),退出、頁(yè)面瀏覽、按鈕事件點(diǎn)擊,頁(yè)面訪問(wèn)時(shí)長(zhǎng)等。(二)埋點(diǎn)采集(4)埋點(diǎn)的應(yīng)用①在產(chǎn)品流程關(guān)鍵部位植入相關(guān)統(tǒng)計(jì)代碼,用來(lái)追蹤每次用戶(hù)的行為,統(tǒng)計(jì)關(guān)鍵流程的使用程度。②在產(chǎn)品中植入多段代碼追蹤用戶(hù)連續(xù)行為,建立用戶(hù)模型來(lái)具體化用戶(hù)在使用產(chǎn)品中的操作行為。③與研發(fā)及數(shù)據(jù)分析師團(tuán)隊(duì)合作,通過(guò)數(shù)據(jù)埋點(diǎn)還原出用戶(hù)畫(huà)像及用戶(hù)行為,建立數(shù)據(jù)分析后臺(tái),通過(guò)數(shù)據(jù)分析,優(yōu)化產(chǎn)品。二、互聯(lián)網(wǎng)線上數(shù)據(jù)采集
物聯(lián)網(wǎng)(InternetofThings,簡(jiǎn)稱(chēng)IoT)是指通過(guò)各種信息傳感器、射頻識(shí)別技術(shù)、全球定位系統(tǒng)、紅外感應(yīng)器、激光掃描儀等各種裝置和技術(shù),實(shí)時(shí)采集各種需要的信息,包括聲、光、熱、電、力學(xué)、化學(xué)、生物、位置等各種需要的信息。物聯(lián)網(wǎng)分為三層:
感知層(設(shè)備接入層)
網(wǎng)絡(luò)層
應(yīng)用層三、物聯(lián)網(wǎng)數(shù)據(jù)采集
數(shù)據(jù)庫(kù)同步數(shù)據(jù)采集是指直接和數(shù)據(jù)庫(kù)進(jìn)行交互同步,進(jìn)而實(shí)現(xiàn)數(shù)據(jù)采集,這種方式的優(yōu)勢(shì)是數(shù)據(jù)來(lái)源大而全。根據(jù)同步的方式可以分為:直接數(shù)據(jù)源同步、生成數(shù)據(jù)文件同步和數(shù)據(jù)庫(kù)日志同步。四、數(shù)據(jù)庫(kù)同步數(shù)據(jù)采集大多數(shù)互聯(lián)網(wǎng)企業(yè)都有各自的海量數(shù)據(jù)采集工具,多用于系統(tǒng)日志采集,如Facebook公司的Scribe、Hadoop平臺(tái)的Chukwa、Cloudera公司的Flume等,這些工具均采用分布式的架構(gòu),能滿(mǎn)足每秒數(shù)百兆的日志數(shù)據(jù)采集和傳輸需求。五、系統(tǒng)日志數(shù)據(jù)采集
Contents目錄第一節(jié)
營(yíng)銷(xiāo)數(shù)據(jù)概述第二節(jié)
營(yíng)銷(xiāo)數(shù)據(jù)的類(lèi)型第三節(jié)
大數(shù)據(jù)采集技術(shù)第四節(jié)營(yíng)銷(xiāo)數(shù)據(jù)管理數(shù)據(jù)匯聚是指將企業(yè)中各個(gè)業(yè)務(wù)產(chǎn)生的數(shù)據(jù)通過(guò)數(shù)據(jù)處理后匯聚到數(shù)據(jù)倉(cāng)庫(kù),按不同的主題進(jìn)行加工形成數(shù)據(jù)資產(chǎn)體系。數(shù)據(jù)匯聚是打破數(shù)據(jù)孤島,匯聚企業(yè)數(shù)據(jù)到統(tǒng)一數(shù)據(jù)倉(cāng)庫(kù)的過(guò)程,也是數(shù)據(jù)倉(cāng)庫(kù)建設(shè)、數(shù)據(jù)體系建設(shè)的基礎(chǔ)重要環(huán)節(jié)。
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 稅務(wù)培訓(xùn)與技能提升
- 桑拿會(huì)所前臺(tái)服務(wù)心得
- 餐具行業(yè)設(shè)計(jì)理念培訓(xùn)體會(huì)
- 園林綠化單位衛(wèi)生整治方案
- 2024年認(rèn)識(shí)電的教案6篇
- 2024年秋天的懷念教案(15篇)
- 《民族國(guó)家的興起》課件
- 農(nóng)村自建房貼瓷磚合同(2篇)
- 中國(guó)液晶材料行業(yè)市場(chǎng)全景評(píng)估及投資方向研究報(bào)告
- 2025有關(guān)寫(xiě)樹(shù)木買(mǎi)賣(mài)合同范本
- 中國(guó)通 用技術(shù)集團(tuán)招聘筆試題庫(kù)
- 【MOOC】工程材料學(xué)-華中科技大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 銀行貸款保證合同范本
- 《汽車(chē)膠粘劑》課件
- 手繪pop教學(xué)課件
- 2024腦血管病指南
- 2022年海南公務(wù)員考試申論試題(B卷)
- 企業(yè)三年?duì)I銷(xiāo)規(guī)劃
- 教師資格考試高中歷史面試試題及解答參考
- 2024年社區(qū)工作者考試試題庫(kù)
- 工廠設(shè)備工程師年終總結(jié)
評(píng)論
0/150
提交評(píng)論