河南省南陽市南陽市第一中學2025屆數學高二上期末調研模擬試題含解析_第1頁
河南省南陽市南陽市第一中學2025屆數學高二上期末調研模擬試題含解析_第2頁
河南省南陽市南陽市第一中學2025屆數學高二上期末調研模擬試題含解析_第3頁
河南省南陽市南陽市第一中學2025屆數學高二上期末調研模擬試題含解析_第4頁
河南省南陽市南陽市第一中學2025屆數學高二上期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省南陽市南陽市第一中學2025屆數學高二上期末調研模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在空間四邊形中,()A. B.C. D.2.魏晉時期數學家劉徽首創(chuàng)割圓術,他在《九章算術》方田章圓田術中指出:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣.”這是注述中所用的割圓術是一種無限與有限的轉化過程,比如在正數中的“”代表無限次重復,設,則可以利用方程求得,類似地可得到正數()A.2 B.3C. D.3.若離散型隨機變量的所有可能取值為1,2,3,…,n,且取每一個值的概率相同,若,則n的值為()A.4 B.6C.9 D.104.直線在y軸上的截距是A. B.C. D.5.已知直線l和兩個不同的平面,,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.數列中,滿足,,設,則()A. B.C. D.7.命題“”為真命題一個充分不必要條件是()A. B.C. D.8.圓與圓的位置關系是()A.外離 B.外切C.相交 D.內切9.已知直線與橢圓:()相交于,兩點,且線段的中點在直線:上,則橢圓的離心率為()A. B.C. D.10.命題“若,則”的逆否命題是()A.若,則 B.若,則C.若,則 D.若,則11.在空間中,“直線與沒有公共點”是“直線與異面”的()A.必要不充分條件 B.充要條件C.充分不必要條件 D.既不充分也不必要條件12.若正方體ABCD-A1B1C1D1的棱長為1,則直線A1C1到平面ACD1的距離為()A.1 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,且,則的最小值為____________14.如圖,在直棱柱中,,則異面直線與所成角的余弦值為___________.15.已知雙曲線的一條漸近線被圓所截得的弦長為2,則雙曲線的離心率為___________.16.在空間直角坐標系中,經過且法向量的平面方程為,經過且方向向量的直線方程為閱讀上面材料,并解決下列問題:給出平面的方程,經過點的直線的方程為,則直線l與平面所成角的余弦值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設建造成本僅與表面積有關,側面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12000π元(π為圓周率)(1)將V表示成r的函數V(r),并求該函數的定義域;(2)討論函數V(r)的單調性,并確定r和h為何值時該蓄水池的體積最大18.(12分)已知函數,曲線在點處的切線與直線垂直(其中為自然對數的底數)(1)求的解析式及單調遞減區(qū)間;(2)若函數無零點,求的取值范圍19.(12分)如圖,四邊形是一塊邊長為4km正方形地域,地域內有一條河流,其經過的路線是以中點為頂點且開口向右的拋物線的一部分(河流寬度忽略不計),某公司準備投資一個大型矩形游樂場.(1)設,矩形游樂園的面積為,求與之間的函數關系;(2)試求游樂園面積的最大值.20.(12分)在①,②,③,,成等比數列這三個條件中選擇符合題意的兩個條件,補充在下面的問題中,并求解.已知數列中,公差不等于的等差數列滿足_________,求數列的前項和.21.(12分)圓錐曲線的方程是.(1)若表示焦點在軸上的橢圓,求的取值范圍;(2)若表示焦點在軸上且焦距為的雙曲線,求的值.22.(10分)已知在平面直角坐標系中,圓A:的圓心為A,過點B(,0)任作直線l交圓A于點C、D,過點B作與AD平行的直線交AC于點E.(1)求動點E的軌跡方程;(2)設動點E的軌跡與y軸正半軸交于點P,過點P且斜率為k1,k2的兩直線交動點E的軌跡于M、N兩點(異于點P),若,證明:直線MN過定點.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用空間向量加減法法則直接運算即可.【詳解】根據向量的加法、減法法則得.故選:A.2、A【解析】設,則,解方程可得結果.【詳解】設,則且,所以,所以,所以,所以或(舍).所以.故選:A【點睛】關鍵點點睛:設是解題關鍵.3、D【解析】根據分布列即可求出【詳解】因為,所以故選:D4、D【解析】在y軸上的截距只需令x=0求出y的值即可得出.【詳解】令x=0,則y=-2,即直線在y周上的截距為-2,故選D.5、D【解析】根據直線、平面的位置關系,應用定義法判斷兩個條件之間的充分、必要性.【詳解】當,時,直線l可與平行、相交,故不一定成立,即充分性不成立;當,時,直線l可在平面內,故不一定成立,即必要性不成立.故選:D.6、C【解析】由遞推公式可歸納得,由此可以求出的值【詳解】因為,,所以,,,因此故選C【點睛】本題主要考查利用數列的遞推式求值和歸納推理思想的應用,意在考查學生合情推理的意識和數學建模能力7、B【解析】求解命題為真命題的充要條件,再利用集合包含關系判斷【詳解】命題“”為真命題,則≤1,只有是的真子集,故選項B符合題意故選:B8、C【解析】利用圓心距與半徑的關系確定正確選項.【詳解】圓的圓心為,半徑為,圓的圓心為,半徑為,圓心距為,,所以兩圓相交.故選:C9、A【解析】將直線代入橢圓方程整理得關于的方程,運用韋達定理,求出中點坐標,再由條件得到,再由,,的關系和離心率公式,即可求出離心率.【詳解】解:將直線代入橢圓方程得,,即,設,,,,則,即中點的橫坐標是,縱坐標是,由于線段的中點在直線上,則,又,則,,即橢圓的離心率為.故選:A10、C【解析】根據逆否命題的定義寫出逆否命題即得【詳解】解:以否定的結論作條件、否定的條件作結論得出的命題為原命題的逆否命題,即“若,則”的逆否命題是“若,則”故選:C11、A【解析】由于在空間中,若直線與沒有公共點,則直線與平行或異面,再根據充分、必要條件的概念判斷,即可得到結果.【詳解】在空間中,若直線與沒有公共點,則直線與平行或異面.故“直線與沒有公共點”是“直線與異面”的必要不充分條件.故選:A.12、B【解析】先證明點A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離,再建立空間直角坐標系,利用向量法求解.【詳解】因為平面平面,所以A1C1//平面ACD1,則點A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離.建立如圖所示的空間直角坐標系,易知=(0,0,1),由題得平面,所以平面,所以,同理,因為平面,所以平面,所以是平面一個法向量,所以平面ACD1的一個法向量為=(1,1,1),故所求的距離為.故選:B【點睛】方法點睛:求點到平面的距離常用的方法有:(1)幾何法(找作證指求);(2)向量法;(3)等體積法.要根據已知條件靈活選擇方法求解.二、填空題:本題共4小題,每小題5分,共20分。13、16【解析】根據,且,利用“1”的代換將,轉化為,再利用基本不等式求解.【詳解】因為,且,所以,當且僅當,,即時,取等號.所以的最小值為16.故答案為:16【點睛】本題主要考查基本不等式求最值,還考查了運算求解的能力,屬于基礎題.14、【解析】建立空間直角坐標系后求相關的向量后再用夾角公式運算即可.【詳解】如圖,以C為坐標原點,所在直線為x,y,z軸,建立空間直角坐標系,則,所以,所以,故異面直線與所成角的余弦值為,故答案為:.15、或2【解析】由圓的方程有圓心,半徑為,討論雙曲線的焦點分別在x或y軸上對應的漸近線方程,根據已知及弦長與半徑、弦心距的幾何關系得到雙曲線參數的齊次方程,即可求離心率.【詳解】由題設,圓的標準方程為,即圓心,半徑為,若雙曲線為時,漸近線為且,所以圓心到雙曲線漸近線的距離為,由弦長、弦心距、半徑的關系知:,故,得:,又,所以,故.若雙曲線為時,漸近線為且,所以圓心到雙曲線漸近線的距離為,由弦長、弦心距、半徑的關系知:,故,得:,又,所以,故.綜上,雙曲線的離心率為或2.故答案為:或2.16、##【解析】根據材料結合已知條件求得平面的法向量以及直線的方向向量,即可用向量法求得線面角.【詳解】因為平面的方程,不妨令,則,故其過點,設其法向量為,根據題意則,即,又平面的方程為,則,不妨取,則,則平面的法向量;經過點的直線的方程為,不妨取,則,則該直線過點,則直線的方向向量.設直線與平面所成的角為,則.又,故,即直線l與平面所成角的余弦值為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)V(r)=(300r﹣4r3)(0,5)(2)見解析【解析】(1)先由圓柱的側面積及底面積計算公式計算出側面積及底面積,進而得出總造價,依條件得等式,從中算出,進而可計算,再由可得;(2)通過求導,求出函數在內的極值點,由導數的正負確定函數的單調性,進而得出取得最大值時的值.(1)∵蓄水池的側面積的建造成本為元,底面積成本為元∴蓄水池的總建造成本為元所以即∴∴又由可得故函數的定義域為(2)由(1)中,可得()令,則∴當時,,函數為增函數當,函數為減函數所以當時該蓄水池的體積最大考點:1.函數的應用問題;2.函數的單調性與導數;2.函數的最值與導數.18、(1)單調減區(qū)間為和;(2)的取值范圍為:或【解析】(1)先求出函數的導數,求得切線的斜率,由兩直線垂直的條件,可得,求得的解析式,可得導數,令導數小于0,可得減區(qū)間;(2)先求得,要使函數無零點,即要在內無解,亦即要在內無解.構造函數,對其求導,然后對進行分類討論,運用單調性和函數零點存在性定理,即可得到的取值范圍.【詳解】(1),又由題意有:,故.此時,,由或,所以函數的單調減區(qū)間為和.(2),且定義域為,要函數無零點,即要在內無解,亦即要在內無解.構造函數.①當時,在內恒成立,所以函數在內單調遞減,在內也單調遞減.又,所以在內無零點,在內也無零點,故滿足條件;②當時,⑴若,則函數在內單調遞減,在內也單調遞減,在內單調遞增.又,所以在內無零點;易知,而,故在內有一個零點,所以不滿足條件;⑵若,則函數在內單調遞減,在內單調遞增.又,所以時,恒成立,故無零點,滿足條件;⑶若,則函數在內單調遞減,在內單調遞增,在內也單調遞增.又,所以在及內均無零點.又易知,而,又易證當時,,所以函數在內有一零點,故不滿足條件.綜上可得:的取值范圍為:或.【點睛】本題主要考查導數的幾何意義、應用導數研究函數的零點問題、其中分類討論思想.本題覆蓋面廣,對考生計算能力要求較高,是一道難題,解答本題,準確求導數是基礎,恰當分類討論是關鍵,易錯點是分類討論不全面、不徹底、不恰當,或因復雜式子變形能力差,而錯漏百出.本題能較好的考查考生的邏輯思維能力、基本計算能力、分類討論思想等19、(1)(2)【解析】(1)首先建立直角坐標系,求出拋物線的方程,利用,求出點的坐標,表示出的面積為即可;(2)利用導數求函數的最值即可.【小問1詳解】以為原點,所在直線為軸,垂直于的直線為軸建立直角坐標系,則,設拋物線的方程為,將點代入方程可得,解得,則拋物線方程為,由已知得,則點的縱坐標為,點的橫坐標為,則,【小問2詳解】,令,解得,當時,,所以函數在上單調遞增,當時,,所以函數在上單調遞減,因此函數時,有最大值,20、詳見解析【解析】根據已知求出的通項公式.當①②時,設數列公差為,利用賦值法得到與的關系式,列方程求出與,求出,寫出的通項公式,可得數列的通項公式,利用錯位相減法求和即可;選②③時,設數列公差為,根據題意得到與的關系式,解出與,寫出的通項公式,可得數列的通項公式,利用錯位相減法求和即可;選①③時,設數列公差為,根據題意得到與的關系式,發(fā)現無解,則等差數列不存在,故不合題意.【詳解】解:因為,,所以是以為首項,為公比的等比數列,所以,選①②時,設數列公差為,因為,所以,因為,所以時,,解得,,所以,所以.所以.(i)所以(ii)(i)(ii),得:所以.選②③時,設數列公差為,因為,所以,即,因為,,成等比數列,所以,即,化簡得,因為,所以,從而,所以,所以,(i)所以(ii)(i)(ii),得:,所以.選①③時,設數列公差為,因為,所以時,,所以.又因為,,成等比數列,所以,即,化簡得,因為,所以,從而無解,所以等差數列不存在,故不合題意.【點睛】本題考查了等差(比)數列的通項公式,考查了錯位相減法在數列求和中的應用,考查了轉化能力與方程思想,屬于中檔題.21、(1)且(2)【解析】(1)由條件可得,解出即可;(2)由條件可得,解出即可.【小問1詳解】若表示焦點在軸上橢圓,則,解得且【小問2詳解】若表示焦點在軸上且焦距為的雙曲線,則,解得22、(1)(2)證明見解析【解析】(1)作出圖象,易知|EB|+|EA|為定值,根據橢圓定義即可判斷點E的軌跡,從而寫出其軌跡方程;(2)設,當直線MN斜率存在時,設直線MN的方程為:,聯立MN方程和E的軌跡方程得根與系數的關系,根據解出k與m的關系即可以判斷MN過定點;最后再考慮MN斜率不存在時是否也過該定點即可.【小問1詳解】由圓

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論