版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽宿州市泗縣屏山鎮(zhèn)中學2025屆高二數(shù)學第一學期期末調(diào)研試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.圓的圓心為()A. B.C. D.2.等比數(shù)列{}中,已知=8,+=4,則的值為()A.1 B.2C.3 D.53.已知中,內(nèi)角,,的對邊分別為,,,,.若為直角三角形,則的面積為()A. B.C.或 D.或4.已知點是雙曲線的左焦點,定點,是雙曲線右支上動點,則的最小值為().A.7 B.8C.9 D.105.“”是“方程是圓的方程”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知,且,則的最大值為()A. B.C. D.7.如圖,在棱長為1的正方體中,點B到直線的距離為()A. B.C. D.8.已知隨機變量服從正態(tài)分布,且,則()A.0.16 B.0.32C.0.68 D.0.849.函數(shù)的導函數(shù)為,對任意,都有成立,若,則滿足不等式的的取值范圍是()A. B.C. D.10.已知,,,執(zhí)行如圖所示的程序框圖,輸出的值為()A. B.C. D.11.數(shù)列1,,,的一個通項公式可以是()A. B.C. D.12.已知數(shù)列的通項公式為,且數(shù)列是遞增數(shù)列,則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)是上的奇函數(shù),,對,成立,則的解集為_________14.已知函數(shù),則的值為______15.已知雙曲線的右焦點為,過點作軸的垂線,在第一象限與雙曲線及其漸近線分別交于,兩點.若,則雙曲線的離心率為___________.16.圓錐的母線長為2,母線所在直線與圓錐的軸所成角為,則該圓錐的側(cè)面積大小為____________.(結(jié)果保留)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列中,,,等比數(shù)列中,,(1)求數(shù)列的通項公式;(2)記,求的最小值18.(12分)已知圓與(1)過點作直線與圓相切,求的方程;(2)若圓與圓相交于、兩點,求的長19.(12分)求證:(1)是上的偶函數(shù);(2)是上的奇函數(shù).20.(12分)在空間直角坐標系Oxyz中,O為原點,已知點,,,設(shè)向量,.(1)求與夾角的余弦值;(2)若與互相垂直,求實數(shù)k的值.21.(12分)已知數(shù)列滿足且.(1)證明數(shù)列是等比數(shù)列;(2)設(shè)數(shù)列滿足,,求數(shù)列的通項公式.22.(10分)已知等比數(shù)列的首項,公比,在中每相鄰兩項之間都插入3個正數(shù),使它們和原數(shù)列的數(shù)一起構(gòu)成一個新的等比數(shù)列.(1)求數(shù)列的通項公式;(2)記數(shù)列前n項的乘積為,試問:是否有最大值?如果是,請求出此時n以及最大值;若不是,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由圓的標準方程求解.【詳解】圓的圓心為,故選:D2、C【解析】由等比數(shù)列性質(zhì)求出公比,將原式化簡后計算【詳解】設(shè)等比數(shù)列{}的公比為,則=,=,所以==.又+=+=(+)=8×=2,+=+=(+)=8×=1,所以+++=2+1=3.故選:C3、C【解析】由正弦定理化角為邊后,由余弦定理求得,然后分類討論:或求解【詳解】由正弦定理,可化為:,即,所以,,所以,又為直角三角形,若,則,,,,若,則,,,故選:C4、C【解析】設(shè)雙曲線的右焦點為M,作出圖形,根據(jù)雙曲線的定義可得,可得出,利用A、P、M三點共線時取得最小值即可得解.【詳解】∵是雙曲線的左焦點,∴,,,,設(shè)雙曲線的右焦點為M,則,由雙曲線的定義可得,則,所以,當且僅當A、P、M三點共線時,等號成立,因此,的最小值為9.故選:C.【點睛】關(guān)鍵點點睛:利用雙曲線的定義求解線段和的最小值,有如下方法:(1)求解橢圓、雙曲線有關(guān)的線段長度和、差的最值,都可以通過相應(yīng)的圓錐曲線的定義分析問題;(2)圓外一點到圓上的點的距離的最值,可通過連接圓外的點與圓心來分析求解.5、A【解析】利用充分條件和必要條件的定義判斷.【詳解】若方程表示圓,則,即,解得或,故“”是“方程是圓的方程”的充分不必要條件,故選:A6、A【解析】由基本不等式直接求解即可得到結(jié)果.【詳解】由基本不等式知;(當且僅當時取等號),的最大值為.故選:A.7、A【解析】以為坐標原點,以為單位正交基底,建立空間直角坐標系,取,,利用向量法,根據(jù)公式即可求出答案.【詳解】以為坐標原點,以為單位正交基底,建立如圖所示的空間直角坐標系,則,,取,,則,,則點B到直線AC1的距離為.故選:A8、C【解析】根據(jù)對稱性以及概率之和等于1求出,再由即可得出答案.【詳解】∵隨機變量服從正態(tài)分布,∴故選:C.9、C【解析】構(gòu)造函數(shù),利用導數(shù)分析函數(shù)的單調(diào)性,將所求不等式變形為,結(jié)合函數(shù)的單調(diào)性即可得解.【詳解】對任意,都有成立,即令,則,所以函數(shù)上單調(diào)遞增不等式即,即因為,所以所以,,解得,所以不等式的解集為故選:C.10、B【解析】計算出、的值,執(zhí)行程序框圖中的程序,進而可得出輸出結(jié)果.【詳解】,,則,執(zhí)行如圖所示的程序,,成立,則,不成立,輸出的值為.故選:B.11、A【解析】根據(jù)各項的分子和分母特征進行求解判斷即可.【詳解】因為,所以該數(shù)列的一個通項公式可以是;對于選項B:,所以本選項不符合要求;對于選項C:,所以本選項不符合要求;對于選項D:,所以本選項不符合要求,故選:A12、C【解析】利用遞增數(shù)列的定義即可.【詳解】由,∴,即是小于2n+1的最小值,∴,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意可以設(shè),求其導數(shù)可知在上的單調(diào)性,由是上的奇函數(shù),可知的奇偶性,進而可知在上的單調(diào)性,由可知的零點,最后分類討論即可.【詳解】設(shè),則對,,則在上為單調(diào)遞增函數(shù),∵函數(shù)是上的奇函數(shù),∴,∴,∴偶函數(shù),∴在上為單調(diào)遞減函數(shù),又∵,∴,由已知得,所以當時,;當時,;當時,;當時,;若,則;若,則或,解得或或;則的解集為.故答案為:.14、【解析】先求出的導函數(shù),然后將代入可得答案.【詳解】,所以故答案為:15、【解析】按題意求得,兩點坐標,以代數(shù)式表達出條件,即可得到關(guān)于的關(guān)系式,進而解得雙曲線的離心率.【詳解】雙曲線的右焦點為,其漸近線為,垂線方程為,則,,,由,得,即即,則,離心率故答案為:16、【解析】由題設(shè)知:圓錐的軸截面為等邊三角形,進而求圓錐的底面周長,由扇形面積公式求圓錐的側(cè)面積大小.【詳解】由題設(shè),圓錐的軸截面為等邊三角形,又圓錐的母線長為2,∴底面半徑為1,則底面周長為,∴圓錐的側(cè)面積大小為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)0【解析】(1)利用等差數(shù)列通項公式基本量的計算可求得,進而利用等比數(shù)列的基本量的計算即可求得數(shù)列的通項公式;(2)由(1)可知,則,觀察分析即可解【小問1詳解】設(shè)等差數(shù)列的公差為d,所以由,,得所以,從而,,所以,,q=3,所以【小問2詳解】由(1)可知,所以,當n=1時,為正值﹐所以;當n=2時,為負值﹐所以;當時,為正值﹐所以又綜上:當n=3時,有最小值018、(1)或(2)【解析】(1)根據(jù)已知可得圓心與半徑,再利用幾何法可得切線方程;(2)聯(lián)立兩圓方程可得公共弦方程,進而可得弦長.【小問1詳解】解:圓的方程可化為:,即:圓的圓心為,半徑為若直線的斜率不存在,方程為:,與圓相切,滿足條件若直線的斜率存在,設(shè)斜率為,方程為:,即:由與圓相切可得:,解得:所以的方程為:,即:綜上可得的方程為:或【小問2詳解】聯(lián)立兩圓方程得:,消去二次項得所在直線的方程:,圓的圓心到的距離,所以.19、(1)證明見詳解(2)證明見詳解【解析】利用函數(shù)奇偶性的定義證明即可【小問1詳解】由題意函數(shù)定義域為且故是上的偶函數(shù)【小問2詳解】由題意函數(shù)定義域為且故是上奇函數(shù)20、(1)(2)【解析】(1)由向量的坐標先求出,,,由向量的夾角公式可得答案.(2)由題意可得,從而求出參數(shù)的值【小問1詳解】由題,,,故,,,所以故與夾角余弦值為.【小問2詳解】由與的互相垂直知,,,即21、(1)證明見解析;(2).【解析】(1)根據(jù)題意可得,根據(jù)等比數(shù)列的定義,即可得證;(2)由(1)可得,可得,利用累加法即可求得數(shù)列的通項公式.【詳解】(1)因
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 甲周疣的臨床護理
- 產(chǎn)后風濕的健康宣教
- 緩慢型心律失常的護理
- 《設(shè)計你的人生》課件
- 《單片機原理及應(yīng)用 》課件-第5章
- 嘴巴里長泡的臨床護理
- 闊韌帶妊娠的健康宣教
- 皮脂腺增生的臨床護理
- JJF(陜) 116-2024 直流數(shù)字功率表校準規(guī)范
- 比較線段的長短課件西西模
- 2024年就業(yè)保障型定向委培合同3篇
- 2024預防流感課件完整版
- 2024滬粵版八年級上冊物理期末復習全冊知識點考點提綱
- 人教版2024-2025學年第一學期八年級物理期末綜合復習練習卷(含答案)
- 殘聯(lián)內(nèi)部審計計劃方案
- 2024-2030年中國漫畫行業(yè)發(fā)展趨勢與投資戰(zhàn)略研究研究報告
- 2024年大學生安全知識競賽題庫及答案(共190題)
- 科學認識天氣智慧樹知到期末考試答案2024年
- 2023-2024學年貴州省貴陽市八年級(上)期末數(shù)學試卷
- 數(shù)學新課標研究論文:小學數(shù)學“教學評一體化”的解讀與探究
- 燃氣紅外線輻射采暖技術(shù)交底
評論
0/150
提交評論