甘肅省古浪縣二中2025屆高一上數學期末統(tǒng)考模擬試題含解析_第1頁
甘肅省古浪縣二中2025屆高一上數學期末統(tǒng)考模擬試題含解析_第2頁
甘肅省古浪縣二中2025屆高一上數學期末統(tǒng)考模擬試題含解析_第3頁
甘肅省古浪縣二中2025屆高一上數學期末統(tǒng)考模擬試題含解析_第4頁
甘肅省古浪縣二中2025屆高一上數學期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

甘肅省古浪縣二中2025屆高一上數學期末統(tǒng)考模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知三個函數,,的零點依次為、、,則A. B.C. D.2.集合{0,1,2}的所有真子集的個數是A.5 B.6C.7 D.83.已知角α的終邊經過點,則()A. B.C. D.4.已知函數為R上的偶函數,若對于時,都有,且當時,,則等于()A.1 B.-1C. D.5.設,且,則()A. B.C. D.6.下列函數中,在R上為增函數的是()A.y=2-xC.y=2x7.如果,,那么直線不通過A.第一象限 B.第二象限C.第三象限 D.第四象限8.已知集合A={1,2,3,4},B={2,4,6,8},則AB中元素的個數為A.1 B.2C.3 D.49.若,且x為第四象限的角,則tanx的值等于A. B.-C. D.-10.下列命題中正確的是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本大題共6小題,每小題5分,共30分。11.命題“存在x∈R,使得x2+2x+5=0”的否定是12.已知冪函數y=xα的圖象過點(4,),則α=__________.13.經過兩條直線和的交點,且垂直于直線的直線方程為__________14.《九章算術》是中國古代的數學名著,其中《方田》一章涉及到了弧田面積的計算問題,如圖所示,弧田是由弧AB和弦AB所圍成的圖中陰影部分若弧田所在圓的半徑為1,圓心角為,則此弧田的面積為____________.15.給出下列五個論斷:①;②;③;④;⑤.以其中的兩個論斷作為條件,一個論斷作為結論,寫出一個正確的命題:___________.16.已知函數,設,,若成立,則實數的最大值是_______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,其中為奇函數,為偶函數.(1)求與的解析式;(2)判斷函數在其定義域上的單調性(不需證明);(3)若不等式恒成立,求實數的取值范圍.18.英國數學家泰勒發(fā)現(xiàn)了如下公式:,其中,此公式有廣泛的用途,例如利用公式得到一些不等式:當時,,.(1)證明:當時,;(2)設,若區(qū)間滿足當定義域為時,值域也為,則稱為的“和諧區(qū)間”.(i)時,是否存在“和諧區(qū)間”?若存在,求出的所有“和諧區(qū)間”,若不存在,請說明理由;(ii)時,是否存在“和諧區(qū)間”?若存在,求出的所有“和諧區(qū)間”,若不存在,請說明理由.19.知,.(Ⅰ)若為真命題,求實數的取值范圍;(Ⅱ)若為成立的充分不必要條件,求實數的取值范圍.20.如圖,平行四邊形ABCD中,CD=1,∠BCD=60°,BD⊥CD,正方形ADEF,且面ADEF⊥面ABCD.(1)求證:BD⊥平面ECD;(2)求D點到面CEB的距離.21.已知,(1)求,的值;(2)求的值

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】令,得出,令,得出,由于函數與的圖象關于直線對稱,且直線與直線垂直,利用對稱性可求出的值,利用代數法求出函數的零點的值,即可求出的值.【詳解】令,得出,令,得出,則函數與函數、交點的橫坐標分別為、.函數與的圖象關于直線對稱,且直線與直線垂直,如下圖所示:聯(lián)立,得,則點,由圖象可知,直線與函數、的交點關于點對稱,則,由題意得,解得,因此,.故選:C.【點睛】本題考查函數的零點之和的求解,充分利用同底數的對數函數與指數函數互為反函數這一性質,結合圖象的對稱性求解,考查數形結合思想的應用,屬于中等題.2、C【解析】集合{0,1,2}中有三個元素,因此其真子集個數為.故選:C.3、D【解析】推導出,,,再由,求出結果【詳解】∵角的終邊經過點,∴,,,∴故選:D4、A【解析】由已知確定函數的遞推式,利用遞推式與奇偶性計算即可【詳解】當時,,則,所以當時,,所以又是偶函數,,所以故選:A5、C【解析】將等式變形后,利用二次根式的性質判斷出,即可求出的范圍.【詳解】即故選:C【點睛】此題考查解三角函數方程,恒等變化后根據的關系即可求解,屬于簡單題目.6、C【解析】對于A,y=2-x=12x,在R上是減函數;對于B,y=x2在-∞,0上是減函數,在0,+∞上是增函數;對于C,當【詳解】解:對于A,y=2-x=12對于B,y=x2在-∞,0對于C,當x≥0時,y=2x是增函數,當x<0時,y=x是增函數,所以函數fx對于D,y=lgx的定義域是0,+∞故選:C.7、A【解析】截距,因此直線不通過第一象限,選A8、B【解析】由題意可得,故中元素的個數為2,所以選B.【名師點睛】集合基本運算的關注點:(1)看元素組成.集合是由元素組成的,從研究集合中元素的構成入手是解決集合運算問題的前提(2)有些集合是可以化簡的,先化簡再研究其關系并進行運算,可使問題簡單明了,易于解決(3)注意數形結合思想的應用,常用的數形結合形式有數軸、坐標系和Venn圖9、D【解析】∵x為第四象限的角,,于是,故選D.考點:商數關系10、C【解析】分析】利用不等式性質逐一判斷即可.【詳解】選項A中,若,,則,若,,則,故錯誤;選項B中,取,滿足,但,故錯誤;選項C中,若,則兩邊平方即得,故正確;選項D中,取,滿足,但,故錯誤.故選:C.【點睛】本題考查了利用不等式性質判斷大小,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、對任何x∈R,都有x2+2x+5≠0【解析】因為命題“存在x∈R,使得x2+2x+5=0”是特稱命題,根據特稱命題的否定是全稱命題,可得命題的否定為:對任何x∈R,都有x2+2x+5≠0故答案為對任何x∈R,都有x2+2x+5≠012、【解析】把點的坐標代入冪函數解析式中即可求出.【詳解】解:由冪函數的圖象過點,所以,解得.故答案為:.13、【解析】聯(lián)立方程組求得交點的坐標為,根據題意求得所求直線的斜率為,結合點斜式可得所求直線的方程.【詳解】聯(lián)立方程組,得交點,因為所求直線垂直于直線,故所求直線的斜率,由點斜式得所求直線方程為,即.故答案為:.14、【解析】根據題意所求面積,再根據扇形和三角形面積公式,進行求解即可.【詳解】易知為等腰三角形,腰長為,底角為,,所以,弧田的面積即圖中陰影部分面積,根據扇形面積及三角形面積可得:所以.故答案為:.15、②③?⑤;③④?⑤;②④?⑤【解析】利用不等式的性質和做差比較即可得到答案.【詳解】由②③?⑤,因為,,則.由③④?⑤,由于,,則,所以.由②④?⑤,由于,且,則,所以.故答案為:②③?⑤;③④?⑤;②④?⑤16、【解析】設不等式的解集為,從而得出韋達定理,由可得,要使,即不等式的解集為,則可得,以及是方程的兩個根,再得出其韋達定理,比較韋達定理可得出,從而求出與的關系,代入,得出答案.【詳解】,則由題意設集合,即不等式的解集為所以是方程的兩個不等實數根則,則由可得,由,所以不等式的解集為所以是方程,即的兩個不等實數根,所以故,,則,則,則由,即,即,解得綜上可得,所以的最大值為故答案:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2)函數在其定義域上為減函數;(3).【解析】(1)由與可建立有關、的方程組,可得解出與的解析式;(2)化簡函數解析式,根據函數的解析式可直接判斷函數的單調性;(3)將所求不等式變形為,根據函數的定義域、單調性可得出關于實數的不等式組,由此可解得實數的取值范圍.【詳解】(1)由于函數為奇函數,為偶函數,,,即,所以,,解得,.由,可得,所以,,;(2)函數的定義域為,,所以,函數在其定義域上為減函數;(3)由于函數為定義域上的奇函數,且為減函數,由,可得,由題意可得,解得.因此,實數的取值范圍是.【點睛】思路點睛:根據函數單調性求解函數不等式的思路如下:(1)先分析出函數在指定區(qū)間上的單調性;(2)根據函數單調性將函數值的關系轉變?yōu)樽宰兞恐g的關系,并注意定義域;(3)求解關于自變量的不等式,從而求解出不等式的解集.18、(1)證明見解析(2)(i)不存在“和諧區(qū)間”,理由見解析(ii)存在,有唯一的“和諧區(qū)間”【解析】(1)利用來證得結論成立.(2)(i)通過證明方程只有一個實根來判斷出此時不存在“和諧區(qū)間”.(ii)對的取值進行分類討論,結合的單調性以及(1)的結論求得唯一的“和諧區(qū)間”.【小問1詳解】由已知當時,,得,所以當時,.【小問2詳解】(i)時,假設存在,則由知,注意到,故,所以在單調遞增,于是,即是方程的兩個不等實根,易知不是方程的根,由已知,當時,,令,則有時,,即,故方程只有一個實根0,故不存在“和諧區(qū)間”.(ii)時,假設存在,則由知若,則由,知,與值域是矛盾,故不存在“和諧區(qū)間”,同理,時,也不存在,下面討論,若,則,故最小值為,于是,所以,所以最大值為2,故,此時的定義域為,值域為,符合題意.若,當時,同理可得,舍去,當時,在上單調遞減,所以,于是,若即,則,故,與矛盾;若,同理,矛盾,所以,即,由(1)知當時,,因為,所以,從而,,從而,矛盾,綜上所述,有唯一的“和諧區(qū)間”.【點睛】對于“新定義”的題目,關鍵是要運用新定義的知識以及原有的數學知識來進行求解.本題有兩個“新定義”,一個是泰勒發(fā)現(xiàn)的公式,另一個是“和諧區(qū)間”.泰勒發(fā)現(xiàn)的公式可以直接用于證明,“和諧區(qū)間”可轉化為函數的單調性來求解.19、(Ⅰ);(Ⅱ).【解析】(Ⅰ)解不等式即得;(Ⅱ)再求出不等式的解,由充分不必要條件與集合包含的關系得出不等關系,可求得結論【詳解】(Ⅰ)若為真命題,解不等式得,實數的取值范圍是.(Ⅱ)解不等式得,為成立的充分不必要條件,是的真子集.且等號不同時取到,得.實數的取值范圍是.【點睛】結論點睛:本題考查充分不必要條件的判斷,一般可根據如下規(guī)則判斷:(1)若是的必要不充分條件,則對應集合是對應集合的真子集;(2)是的充分不必要條件,則對應集合是對應集合的真子集;(3)是的充分必要條件,則對應集合與對應集合相等;(4)是的既不充分又不必要條件,對的集合與對應集合互不包含20、(1)見解析;(2)點到平面的距離為【解析】(1)根據題意選擇,只需證明,根據線面垂直的判定定理,即可證明平面;(2)把點到面的距離,轉化為三棱錐的高,利用等體積法,即可求解高試題解析:(1)證明:∵四邊形為正方形∴又∵平

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論