南昌市重點中學(xué)2025屆數(shù)學(xué)高二上期末調(diào)研試題含解析_第1頁
南昌市重點中學(xué)2025屆數(shù)學(xué)高二上期末調(diào)研試題含解析_第2頁
南昌市重點中學(xué)2025屆數(shù)學(xué)高二上期末調(diào)研試題含解析_第3頁
南昌市重點中學(xué)2025屆數(shù)學(xué)高二上期末調(diào)研試題含解析_第4頁
南昌市重點中學(xué)2025屆數(shù)學(xué)高二上期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

南昌市重點中學(xué)2025屆數(shù)學(xué)高二上期末調(diào)研試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若數(shù)列的前n項和(n∈N*),則=()A.20 B.30C.40 D.502.不等式表示的平面區(qū)域是一個()A.三角形 B.直角三角形C.矩形 D.梯形3.已知銳角的內(nèi)角A,B,C的對邊分別為a,b,c,若向量,,,則的最小值為()A. B.C. D.4.已知,,若直線上存在點P,滿足,則l的傾斜角的取值范圍是()A. B.C D.5.已知是雙曲線的左焦點,,是雙曲線右支上的動點,則的最小值為()A.9 B.8C.7 D.66.如圖,已知正方體,點P是棱中點,設(shè)直線為a,直線為b.對于下列兩個命題:①過點P有且只有一條直線l與a、b都相交;②過點P有且只有兩條直線l與a、b都成角.以下判斷正確的是()A.①為真命題,②為真命題 B.①為真命題,②為假命題C.①為假命題,②為真命題 D.①為假命題,②為假命題7.以橢圓+=1的焦點為頂點,以這個橢圓的長軸的端點為焦點的雙曲線方程是()A. B.C. D.8.德國數(shù)學(xué)家米勒曾提出最大視角問題,這一問題一般的描述是:已知點A、B是的ON邊上的兩個定點,C是OM邊上的一個動點,當C在何處時,最大?問題的答案是:當且僅當?shù)耐饨訄A與邊OM相切于點C時,最大.人們稱這一命題為米勒定理.已知點P、Q的坐標分別是(2,0),(4,0),R是y軸正半軸上的一動點,當最大時,點R的縱坐標為()A.1 B.C. D.29.已知數(shù)列滿足:,數(shù)列的前n項和為,若恒成立,則的取值范圍是()A. B.C. D.10.某幾何體的三視圖如圖所示,則該幾何體的體積為A.54 B.45C.27 D.8111.等差數(shù)列的前項和,若,則A.8 B.10C.12 D.1412.已知方程表示雙曲線,則實數(shù)的取值范圍是()A.或 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,奧林匹克標志由五個互扣的環(huán)圈組成,五環(huán)象征五大洲的團結(jié).若從該奧林匹克標志的五個環(huán)圈中任取2個,則這2個環(huán)圈恰好相交的概率為___________.14.設(shè)f(x)=xlnx,若f′(x0)=2,則x0=________15.已知數(shù)列中,.若為等差數(shù)列,則______.16.圓的圓心坐標為___________;半徑為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓的圓心在第一象限內(nèi),圓關(guān)于直線對稱,與軸相切,被直線截得的弦長為.(1)求圓的方程;(2)若點,求過點的圓的切線方程.18.(12分)已知圓的圓心為,且圓經(jīng)過點(1)求圓的標準方程;(2)若圓:與圓恰有兩條公切線,求實數(shù)取值范圍19.(12分)已知函數(shù)(1)當時,求函數(shù)的極值;(2)當時,若恒成立,求實數(shù)a的取值范圍20.(12分)在①直線l:是拋物線C的準線;②F是橢圓的一個焦點;③,對于C上的點A,的最小值為;在以上三個條件中任選一個,填到下面問題中的橫線處,并完成解答.已知拋物線C:的焦點為F,滿足_____(1)求拋物線C的標準方程;(2)是拋物線C上在第一象限內(nèi)的一點,直線:與C交于M,N兩點,若的面積為,求m的值21.(12分)已知函數(shù)其中.(1)當時,求函數(shù)的單調(diào)區(qū)間;(2)當時,函數(shù)有兩個零點,,滿足,證明.22.(10分)已知橢圓的焦點為,且該橢圓過點(1)求橢圓的標準方程;(2)若橢圓上的點滿足,求的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由前項和公式直接作差可得.【詳解】數(shù)列的前n項和(n∈N*),所以.故選:B.2、D【解析】作出不等式組所表示平面區(qū)域,可得出結(jié)論.【詳解】由可得或,作出不等式組所表示的平面區(qū)域如下圖中的陰影部分區(qū)域所示:由圖可知,不等式表示的平面區(qū)域是一個梯形.故選:D.3、C【解析】由,得到,根據(jù)正弦、余弦定理定理化簡得到,化簡得到,再結(jié)合基本不等式,即可求解.【詳解】由題意,向量,,因為,所以,可得,由正弦定理得,整理得,又由余弦定理,可得,因為,所以,由,所以,因為是銳角三角形,且,可得,解得,所以,所以,當且僅當,即時等號成立,故的最小值為.故選:C4、A【解析】根據(jù)題意,求得直線恒過的定點,數(shù)形結(jié)合只需求得線段與直線有交點時的斜率,結(jié)合斜率和傾斜角的關(guān)系即可求得結(jié)果.【詳解】對直線,變形為,故其恒過定點,若直線存在點P,滿足,只需直線與線段有交點即可.數(shù)形結(jié)合可知,當直線過點時,其斜率取得最大值,此時,對應(yīng)傾斜角;當直線過點時,其斜率取得最小值,此時,對應(yīng)傾斜角為.根據(jù)斜率和傾斜角的關(guān)系,要滿足題意,直線的傾斜角的范圍為:.故選:A.5、A【解析】由雙曲線方程求出,再根據(jù)點在雙曲線的兩支之間,結(jié)合可求得答案【詳解】由,得,則,所以左焦點為,右焦點,則由雙曲線的定義得,因為點在雙曲線的兩支之間,所以,所以,當且僅當三點共線時取等號,所以的最小值為9,故選:A6、A【解析】①由正方形的性質(zhì),可以延伸正方形,再利用兩條平行線確定一個平面即可;②一組鄰邊與對角面夾角相等,在平面內(nèi)繞P轉(zhuǎn)動,可以得到二條直線與a、b的夾角都等于.【詳解】如下圖所示,在側(cè)面正方形和再延伸一個正方形和,則平面和在同一個平面內(nèi),所以過點P,有且只有一條直線l,即與a、b相交,故①為真命題;取中點N,連PN,由于a、b為異面直線,a、b的夾角等于與b的夾角.由于平面,平面,,所以平面,所以與與b的夾角都為.又因為平面,所以與與b的夾角都為,而,所以過點P,在平面內(nèi)存在一條直線,使得與與b的夾角都為,同理可得,過點P,在平面內(nèi)存在一條直線,使得與與的夾角都為;故②為真命題.故選:A7、B【解析】根據(jù)橢圓的幾何性質(zhì)求橢圓的焦點坐標和長軸端點坐標,由此可得雙曲線的a,b,c,再求雙曲線的標準方程.【詳解】∵橢圓的方程為+=1,∴橢圓的長軸端點坐標為,,焦點坐標為,,∴雙曲線的焦點在y軸上,且a=1,c=2,∴b2=3,∴雙曲線方程為,故選:B.8、C【解析】由題意,借助米勒定理,可設(shè)出坐標,表示出的外接圓方程,然后在求解點R的縱坐標.【詳解】因為點P、Q的坐標分別是(2,0),(4,0)是x軸正半軸上的兩個定點,點R是y軸正半軸上的一動點,根據(jù)米勒定理,當?shù)耐饨訄A與y軸相切時,最大,由垂徑定理可知,弦的垂直平分線必經(jīng)過的外接圓圓心,所以弦的中點為(3,0),故弦中點的橫坐標即為的外接圓半徑,即,由垂徑定理可得,圓心坐標為,故的外接圓的方程為,所以點R的縱坐標為.故選:C.9、D【解析】由于,所以利用裂項相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【詳解】,故,故恒成立等價于,即恒成立,化簡得到,因為,當且僅當,即時取等號,所以故選:D10、B【解析】由三視圖可得該幾何體是由平行六面體切割掉一個三棱錐而成,直觀圖如圖所示,所以該幾何體的體積為故選B點睛:本題考查了組合體的體積,由三視圖還原出幾何體,由四棱柱的體積減去三棱錐的體積.11、C【解析】假設(shè)公差為,依題意可得.所以.故選C.考點:等差數(shù)列的性質(zhì).12、A【解析】根據(jù)雙曲線標準方程的性質(zhì),列出關(guān)于不等式,求解即可得到答案【詳解】由雙曲線的性質(zhì):,解的或,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用古典概型求概率.【詳解】從該奧林匹克標志的五個環(huán)圈中任取2個,共有10種情況,其中這2個環(huán)圈恰好相交的情況有4種,則所求的概率.故答案為:.14、【解析】f(x)=xlnx∴f'(x)=lnx+1則f′(x0)=lnx0+1=2解得:x0=e15、【解析】利用等差中項求解即可【詳解】由為等差數(shù)列,則,解得故答案為:16、①.②.【解析】配方后可得圓心坐標和半徑【詳解】將圓的一般方程化為圓標準方程是,圓心坐標為,半徑為故答案為:;三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)結(jié)合點到直線的距離公式、弦長公式求得,由此求得圓的方程.(2)根據(jù)過的圓的切線的斜率是否存在進行分類討論,結(jié)合點到直線的距離公式求得切線方程.【小問1詳解】由題意,設(shè)圓的標準方程為:,圓關(guān)于直線對稱,圓與軸相切:…①點到的距離為:,圓被直線截得的弦長為,,結(jié)合①有:,,又,,,圓的標準方程為:.【小問2詳解】當直線的斜率不存在時,滿足題意當直線的斜率存在時,設(shè)直線的斜率為,則方程為.又圓C的圓心為,半徑,由,解得.所以直線方程為,即即直線的方程為或.18、(1);(2).【解析】(1)根據(jù)給定條件求出圓C的半徑,再直接寫出方程作答.(2)由給定條件可得圓C與圓O相交,由此列出不等式求解作答.【小問1詳解】依題意,圓C的半徑,所以圓的標準方程是:.【小問2詳解】圓:圓心,半徑為,因圓與圓恰有兩條公切線,則有圓O與圓C相交,即,而,因此有,解得,所以實數(shù)的取值范圍是.19、(1)極大值;極小值(2)【解析】(1)利用導(dǎo)數(shù)來求得的極大值和極小值.(2)由不等式分離常數(shù),通過構(gòu)造函數(shù)法,結(jié)合導(dǎo)數(shù)來求得的取值范圍.【小問1詳解】當時,,,令,可得或2所以在區(qū)間遞增;在區(qū)間遞減.故當時.函數(shù)有極大值,故當時,函數(shù)有極小值;【小問2詳解】由,有,可化為,令,有,令,有,令,可得,可得函數(shù)的增區(qū)間為,減區(qū)間為,有,可知,有函數(shù)為減函數(shù),有,故當時,若恒成立,則實數(shù)a的取值范圍為【點睛】求解不等式恒成立問題,可利用分離常數(shù)法,結(jié)合導(dǎo)數(shù)求最值來求解.在利用導(dǎo)數(shù)研究函數(shù)的過程中,如果一階導(dǎo)數(shù)無法解決,可考慮利用二階導(dǎo)數(shù)來進行求解.20、(1)(2)或.【解析】(1)選條件①,由準線方程得參數(shù),從而得拋物線方程;選條件②,由橢圓的焦點坐標與拋物線焦點坐標相同求得得拋物線方程;選條件③,由F,A,B三點共線時,,再由兩點間距離公式求得得拋物線方程;(2)求出點坐標,由點到直線距離公式求得到直線的距離,設(shè),,直線方程代入拋物線方程,判別式大于0保證相交,由韋達定理得,由弦長公式得弦長,再計算出三角形的面積后可解得【小問1詳解】選條件①:由準線方程為知,所以拋物線C的方程為選條件②:因為拋物線的焦點坐標為所以由已知得橢圓的一個焦點為.所以,又,所以,所以拋物線C的方程為選條件③:由題意可知得,當F,A,B三點共線時,,由兩點間距離公式,解得,所以拋物線C的方程為.【小問2詳解】把代入方程,可得,設(shè),,聯(lián)立,消去y可得,由,解得,又知,,所以,由到直線的距離為,所以,即,解得或經(jīng)檢驗均滿足,所以m的值為或.21、(1)單調(diào)遞增區(qū)間,無遞減區(qū)間;(2)證明見解析【解析】(1)求出函數(shù)的導(dǎo)數(shù),從而判斷其正負,確定函數(shù)的單調(diào)區(qū)間;(2)根據(jù)題意可得到,進而變形為,然后換元令,將證明的問題轉(zhuǎn)換為成立的問題,從而構(gòu)造新函數(shù),求新函數(shù)的導(dǎo)數(shù),判斷其單調(diào)性,求其最值,進而證明不等式成立.【小問1詳解】時,,,令,當時,,當時,,故,則,故是單調(diào)遞增函數(shù),即的單調(diào)遞增區(qū)間為,無遞減區(qū)間;【小問2詳解】當時,函數(shù)有兩個零點,,滿足,即,所以,則,令,由于,則,則x2=tx故,要證明,只需證明,即證,設(shè),令,則,當時,,即在時為增函數(shù),故,即,所以在時為增函數(shù),即,即,故,即.【點睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間以及涉及到零點的不等式的證明問題,解答時要注意導(dǎo)數(shù)的應(yīng)用,主要是根據(jù)導(dǎo)數(shù)的正負判斷函數(shù)的單調(diào)性,進而求函數(shù)極值或最值,解答的關(guān)鍵時對函數(shù)式或者不等式進行合理的變形,進而能構(gòu)造新的函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論