版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2025屆廣西貴港市覃塘高中高二數(shù)學第一學期期末達標檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“”的一個充要條件是()A. B.C. D.2.已知的周長等于10,,通過建立適當?shù)钠矫嬷苯亲鴺讼?,頂點的軌跡方程可以是()A. B.C. D.3.中國古代數(shù)學著作算法統(tǒng)宗中有這樣一個問題:“三百七十八里關,初步健步不為難,次日腳痛減一半,六朝才得到其關,要見首日行里數(shù),請公仔細算相還.”其大意為:有一個人走里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,恰好走了天到達目的地,則該人第一天走的路程為()A.里 B.里C.里 D.里4.已知拋物線上一點到焦點的距離為3,準線為l,若l與雙曲線的兩條漸近線所圍成的三角形面積為,則雙曲線C的離心率為()A.3 B.C. D.5.橢圓的長軸長為()A. B.C. D.6.函數(shù)的最小值是()A.3 B.4C.5 D.67.已知F是拋物線的焦點,直線l是拋物線的準線,則F到直線l的距離為()A.2 B.4C.6 D.88.若,則與的大小關系是()A. B.C. D.不能確定9.設F為雙曲線C:(a>0,b>0)的右焦點,O為坐標原點,以OF為直徑的圓與圓x2+y2=a2交于P、Q兩點.若|PQ|=|OF|,則C的離心率為A. B.C.2 D.10.橢圓離心率是()A. B.C. D.11.若球的半徑為,一個截面圓的面積是,則球心到截面圓心的距離是()A. B.C. D.12.下邊程序框圖的算法思路源于我國古代數(shù)學名著《九章算術》中的“更相減損術”.執(zhí)行該程序框圖,如果輸入a=102,b=238,則輸出的a的值為()A.17 B.34C.36 D.68二、填空題:本題共4小題,每小題5分,共20分。13.已知向量與是平面的兩個法向量,則__________14.已知數(shù)列的前項和,則該數(shù)列的首項__________,通項公式__________.15.已知函數(shù),則函數(shù)在區(qū)間上的平均變化率為___________.16.根據(jù)如下樣本數(shù)據(jù)34567402.5-0.50.5-2得到的回歸方程為若,則的值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知點和圓.(1)求圓的圓心坐標和半徑;(2)設為圓上的點,求的取值范圍.18.(12分)已知拋物線的焦點也是橢圓的一個焦點,如圖,過點任作兩條互相垂直的直線,,分別交拋物線于,,,四點,,分別為,的中點.(1)求的值;(2)求證:直線過定點,并求出該定點的坐標;(3)設直線交拋物線于,兩點,試求的最小值.19.(12分)已知橢圓的一個頂點恰好是拋物線的焦點,橢圓C的離心率為.(Ⅰ)求橢圓C的標準方程;(Ⅱ)從橢圓C在第一象限內(nèi)的部分上取橫坐標為2的點P,若橢圓C上有兩個點A,B使得的平分線垂直于坐標軸,且點B與點A的橫坐標之差為,求直線AP的方程.20.(12分)已知E,F(xiàn)分別是正方體的棱BC和CD的中點(1)求與所成角的大??;(2)求與平面所成角的余弦值21.(12分)某廠A車間為了確定合理的工時定額,需要確定加工零件所花費的時間,為此作了五次試驗,得到數(shù)據(jù)如下:加工零件的個數(shù)x12345加工的時間y(小時)1.52.43.23.94.5(1)在給定的坐標系中畫出散點圖;(2)求出y關于x的回歸方程;(3)試預測加工9個零件需要多少時間?參考公式:,22.(10分)如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點,是棱上的點,,,.(1)求證:平面平面;(2)若,求異面直線與所成角余弦值;(3)在線段上是否存在一點,使二面角大小為?若存在,請指出點的位置,若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】結(jié)合不等式的基本性質(zhì),利用充分條件和必要條件的定義判斷.【詳解】A.當時,滿足,推不出,故不充分;B.當時,滿足,推不出,故不充分;C.當時,推不出,故不必要;D.因為,故充要,故選:D2、A【解析】根據(jù)橢圓的定義進行求解即可.【詳解】因為的周長等于10,,所以,因此點的軌跡是以為焦點的橢圓,且不在直線上,因此有,所以頂點的軌跡方程可以是,故選:A3、C【解析】建立等比數(shù)列的模型,由等比數(shù)列的前項和公式求解【詳解】記第天走的路程為里,則是等比數(shù)列,,,故選:C4、C【解析】先由已知結(jié)合拋物線的定義求出,從而可得拋物線的準線方程,則可求出準線l與兩條漸近線的交點分別為,然后由題意可得,進而可求出雙曲線的離心率詳解】依題意,拋物線準線,由拋物線定義知,解得,則準線,雙曲線C的兩條漸近線為,于是得準線l與兩條漸近線的交點分別為,原點為O,則面積,雙曲線C的半焦距為c,離心率為e,則有,解得故選:C5、D【解析】由橢圓方程可直接求得.【詳解】由橢圓方程知:,長軸長為.故選:D.6、D【解析】先判斷函數(shù)的單調(diào)性,再利用其單調(diào)性求最小值【詳解】由,得,因為,所以,所以在上單調(diào)遞增,所以,故選:D7、B【解析】根據(jù)拋物線定義即可求解【詳解】由得,所以F到直線l的距離為故選:B8、B【解析】由題知,進而研究的符號即可得答案.詳解】解:,所以,即.故選:B9、A【解析】準確畫圖,由圖形對稱性得出P點坐標,代入圓的方程得到c與a關系,可求雙曲線的離心率【詳解】設與軸交于點,由對稱性可知軸,又,為以為直徑的圓的半徑,為圓心,又點在圓上,,即,故選A【點睛】本題為圓錐曲線離心率的求解,難度適中,審題時注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運算繁瑣,準確率大大降低,雙曲線離心率問題是圓錐曲線中的重點問題,需強化練習,才能在解決此類問題時事半功倍,信手拈來10、C【解析】將方程轉(zhuǎn)化為橢圓的標準方程,求得a,c,再由離心率公式求得答案.【詳解】解:由得,所以,則,所以橢圓的離心率,故選:C.11、C【解析】由題意可解出截面圓的半徑,然后利用勾股定理求解球心與截面圓圓心的距離【詳解】由截面圓的面積為可知,截面圓的半徑為,則球心到截面圓心的距離為故選:C【點睛】解答本題的關鍵點在于,球心與截面圓圓心的連線垂直于截面12、B【解析】根據(jù)程序框圖所示代入運行即可.【詳解】初始輸入:;第一次運算:;第二次運算:;第三次運算:;第四次運算:;結(jié)束,輸出34.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由且為非零向量可直接構(gòu)造方程求得,進而得到結(jié)果.【詳解】由題意知:,,解得:(舍)或,.故答案為:.14、①.;②..【解析】空一:利用代入法直接進行求解即可;空二:利用之間的關系進行求解即可.【詳解】空一:;空二:當時,,顯然不適合上式,所以,故答案為:;15、3【解析】根據(jù)平均變化率的定義即可計算.【詳解】設,因,,所以.故答案為:316、-1.4##【解析】分別求出的值,即得到樣本中心點,根據(jù)樣本中心點一定在回歸直線上,可求得答案.【詳解】,則得到樣本中心點為,因為樣本中心點一定在回歸直線上,故,解得,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)圓心的坐標為,半徑;(2)【解析】(1)利用配方法化圓的一般方程為標準方程,可得圓心坐標與半徑;(2)由兩點間的距離公式求得,得到與,則的取值范圍可求【小問1詳解】解:由,得,圓心的坐標為,半徑;【小問2詳解】解:,,,,的取值范圍是18、(1)(2)證明見解析,(3,0)(3)【解析】(1)求出橢圓的焦點坐標,從而可知拋物線的焦點坐標,進而可得的值;(2)首先設出直線的方程,聯(lián)立直線與拋物線的方程,得到,坐標,令,可得直線過點,再證明當,,,三點共線即可;(3)設出的直線方程,聯(lián)立直線與拋物線的方程,利用韋達定理找出根的關系,再利用兩點間的距離公式求出最小值即可.【小問1詳解】橢圓的焦點坐標為,由于拋物線的焦點也是橢圓的一個焦點,故,即,;小問2詳解】由(1)知,拋物線的方程為,設,,,,由題意,直線的斜率存在且設直線的方程為,代入可得,則,故,故的中點坐標為,由,設直線的方程為,代入可得,則,故,可得的中點坐標為,令得,此時,故直線過點,當時,,所以,,,三點共線,所以直線過定點.【小問3詳解】設,由題意直線的斜率存在,設直線的方程為,代入可得,則,,,故,當即直線垂直軸時,取得最小值.19、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由題意可得關于參數(shù)的方程,解之即可得到結(jié)果;(Ⅱ)設直線AP的斜率為k,聯(lián)立方程結(jié)合韋達定理可得A點坐標,同理可得B點坐標,結(jié)合橫坐標之差為,可得直線方程.【詳解】(Ⅰ)由拋物線方程可得焦點為,則橢圓C的一個頂點為,即.由,解得.∴橢圓C的標準方程是;(Ⅱ)由題可知點,設直線AP的斜率為k,由題意知,直線BP的斜率為,設,,直線AP的方程為,即.聯(lián)立方程組消去y得.∵P,A為直線AP與橢圓C的交點,∴,即.把換成,得.∴,解得,當時,直線BP的方程為,經(jīng)驗證與橢圓C相切,不符合題意;當時,直線BP的方程為,符合題意.∴直線AP得方程為.【點睛】關鍵點點睛:兩條直線關于直線對稱,兩直線的傾斜角互補,斜率互為相反數(shù).20、(1)60°;(2).【解析】(1)建立空間直角坐標系,利用空間向量夾角的坐標公式即可求出異面直線所成角的余弦值,進而結(jié)合異面直線成角的范圍即可求出結(jié)果;(2)建立空間直角坐標系,利用空間向量夾角的坐標公式即可求出求出線面角的正弦值,進而結(jié)合線面角的范圍即可求出結(jié)果;【小問1詳解】以AB,AD,所在直線分別為x,y,z軸建立如圖所示的空間直角坐標系,設正方體的棱長為,則,,,,所以,,設與EF所成角的大小為,則,因為異面直線成角的范圍是,所以與所成角的大小為60°【小問2詳解】設平面的法向量為,與平面所成角為,因為,,所以,,所以,令,得為平面的一個法向量,又因為,所以,所以21、(1)圖見解析;(2);(3)小時.【解析】(1)根據(jù)表格數(shù)據(jù)在坐標系中描出對應點即可.(2)由表格中的數(shù)據(jù)代入公式算出,再求,即可得到方程;(3)中將自變量為9代入回歸方程可得需用時間.【小問1詳解】【小問2詳解】由表中數(shù)據(jù)得:,,,,由x與y之間具有線性相關關系,根據(jù)公式知:,,∴回歸直線方程為:【小問3詳解】將代入回歸直線方程得,,∴預測加工9個零件需要小時22、(1)證明見解析;(2);(3)存在,點在線段上位于靠近點的四等分點處.【解析】(1)證明平面,利用面面垂直的判定定理可證得結(jié)論成立;(2)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得異面直線與所成角的余弦值;(3)假設存在點,設,其中,利用空間向量法可得出關于的方程,結(jié)合的取值范圍可求得的值,即可得出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 上海市寶山區(qū)上海交大附中2025屆高二生物第一學期期末統(tǒng)考模擬試題含解析
- 2025屆內(nèi)蒙古呼和浩特市第六中學高一生物第一學期期末經(jīng)典試題含解析
- 天津市西青區(qū)2025屆高三英語第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析
- 湖北省黃岡市黃岡中學2025屆數(shù)學高二上期末綜合測試模擬試題含解析
- 江蘇省無錫市石塘灣中學2025屆高三語文第一學期期末檢測試題含解析
- 河北省永年縣第二中學2025屆高二上生物期末學業(yè)水平測試試題含解析
- 2025屆山東省青島市黃島區(qū)開發(fā)區(qū)致遠中學數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析
- 2025屆安徽省皖西南聯(lián)盟高二數(shù)學第一學期期末聯(lián)考試題含解析
- 2025屆重慶市重點中學英語高三上期末調(diào)研模擬試題含解析
- 云南省宜良第一中學2025屆高二數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析
- 清遠市城市樹木修剪技術指引(試行)
- GB∕T 2980-2018 工程機械輪胎規(guī)格、尺寸、氣壓與負荷
- CNC刀具壽命管控表
- 中國標準文獻分類法(中標分類CCS)
- 《國家自然科學基金申請經(jīng)驗交流》PPT共30頁課件
- 《紅樓夢(英文)》PPT課件
- 姜文導演風格分析.ppt
- 三維地下管網(wǎng)方案設計書
- 關于(牙合)學幾個熱點問題爭論
- 二次函數(shù)單元測試卷試題
- 高中體育《100米短跑》教學PPT課件
評論
0/150
提交評論