版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆江西省寧師中學、瑞金二中高一數(shù)學第一學期期末調(diào)研模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知命題p:x為自然數(shù),命題q:x為整數(shù),則p是q的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件2.已知,則的大小關(guān)系為A. B.C. D.3.已知函數(shù)則滿足的實數(shù)的取值范圍是()A. B.C. D.4.若,則的大小關(guān)系為()A. B.C. D.5.已知函數(shù)是定義在上的偶函數(shù),且在上是減函數(shù),若,,,則,,的大小關(guān)系為()A. B.C. D.6.已知,,三點,點使直線,且,則點D的坐標是(
)A. B.C. D.7.下列函數(shù)中,在其定義域內(nèi)單調(diào)遞減的是()A. B.C. D.8.《九章算術(shù)》中,稱底面為矩形且有一側(cè)棱垂直于底面的四棱錐為陽馬,如圖,某陽馬的三視圖如圖所示,則該陽馬的最長棱的長度為()A. B.C.2 D.9.已知在定義域上是減函數(shù),且,則的取值范圍為()A.(0,1) B.(-2,1)C.(0,) D.(0,2)10.基本再生數(shù)與世代間隔是流行病學基本參數(shù),基本再生數(shù)是指一個感染者傳染的平均人數(shù),世代間隔指兩代間傳染所需的平均時間,在型病毒疫情初始階段,可以用指數(shù)函數(shù)模型描述累計感染病例數(shù)隨時間(單位:天)的變化規(guī)律,指數(shù)增長率與、近似滿足,有學者基于已有數(shù)據(jù)估計出,.據(jù)此,在型病毒疫情初始階段,累計感染病例數(shù)增加至的4倍,至少需要()(參考數(shù)據(jù):)A.6天 B.7天C.8天 D.9天二、填空題:本大題共6小題,每小題5分,共30分。11.定義域為的奇函數(shù),當時,,則關(guān)于的方程所有根之和為,則實數(shù)的值為________12.給出下列命題:①存在實數(shù),使;②函數(shù)是偶函數(shù);③若是第一象限角,且,則;④是函數(shù)的一條對稱軸方程以上命題是真命題的是_______(填寫序號)13.,,則的值為__________.14.已知冪函數(shù)在上單調(diào)遞減,則___________.15.已知函數(shù),x0R,使得,則a=_________.16.如圖,若集合,,則圖中陰影部分表示的集合為___三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知集合A={x|x=m2-n2,m∈Z,n∈Z}.求證:(1)3∈A;(2)偶數(shù)4k-2(k∈Z)不屬于A18.已知函數(shù)f(x)=-,若x∈R,f(x)滿足f(-x)=-f(x)(1)求實數(shù)a的值;(2)判斷函數(shù)f(x)(x∈R)的單調(diào)性,并說明理由;(3)若對任意的t∈R,不等式f(t2-4t)+f(-k)<0恒成立,求k的取值范圍19.已知函數(shù).求:(1)的值域;(2)的零點;(3)時x的取值范圍20.已知函數(shù)是偶函數(shù)(1)求實數(shù)的值;(2)若函數(shù)的最小值為,求實數(shù)的值;(3)當為何值時,討論關(guān)于的方程的根的個數(shù)21.已知:,:,分別求m的值,使得和:垂直;平行;重合;相交
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)兩個命題中的取值范圍,分析是否能得到pq和qp【詳解】若x為自然數(shù),則它必為整數(shù),即p?q但x為整數(shù)不一定是自然數(shù),如x=-2,即qp故p是q的充分不必要條件故選:A.2、D【解析】,且,,,故選D.3、B【解析】根據(jù)函數(shù)的解析式,得出函數(shù)的單調(diào)性,把不等式,轉(zhuǎn)化為相應(yīng)的不等式組,即可求解.【詳解】由題意,函數(shù),可得當時,,當時,函數(shù)在單調(diào)遞增,且,要使得,則,解得,即不等式的解集為,故選:B.【點睛】思路點睛:該題主要考查了函數(shù)的單調(diào)性的應(yīng)用,解題思路如下:(1)根據(jù)函數(shù)的解析式,得出函數(shù)單調(diào)性;(2)合理利用函數(shù)的單調(diào)性,得出不等式組;(3)正確求解不等式組,得到結(jié)果.4、D【解析】根據(jù)對數(shù)的運算性質(zhì)以及指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性即可判斷【詳解】因為,而函數(shù)在定義域上遞增,,所以故選:D5、B【解析】分析:利用函數(shù)的單調(diào)性即可判斷.詳解:因為函數(shù)為偶函數(shù)且在(?∞,0)上單調(diào)遞減,所以函數(shù)在(0,+∞)上單調(diào)遞增,由于,所以.故選B.點睛:對數(shù)函數(shù)值大小的比較一般有三種方法:①單調(diào)性法,在同底的情況下直接得到大小關(guān)系,若不同底,先化為同底.②中間值過渡法,即尋找中間數(shù)聯(lián)系要比較的兩個數(shù),一般是用“0”,“1”或其他特殊值進行“比較傳遞”.③圖象法,根據(jù)圖象觀察得出大小關(guān)系6、D【解析】先設(shè)點D的坐標,由題中條件,且,建立D點橫縱坐標的方程,解方程即可求出結(jié)果.【詳解】設(shè)點,則由題意可得:,解得,所以D點坐標為.【點睛】本題主要考查平面向量,屬于基礎(chǔ)題型.7、B【解析】根據(jù)函數(shù)的單調(diào)性確定正確選項【詳解】在上遞增,不符合題意.在上遞減,符合題意.在上有增有減,不符合題意.故選:B8、B【解析】根據(jù)三視圖畫出原圖,從而計算出最長的棱長.【詳解】由三視圖可知,該幾何體如下圖所示,平面,,則所以最長的棱長為.故選:B9、A【解析】根據(jù)函數(shù)的單調(diào)性進行求解即可.【詳解】因為在定義域上是減函數(shù),所以由,故選:A10、B【解析】根據(jù)題意將給出的數(shù)據(jù)代入公式即可計算出結(jié)果【詳解】因為,,,所以可以得到,由題意可知,所以至少需要7天,累計感染病例數(shù)增加至的4倍故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由題意,作函數(shù)y=f(x)與y=a的圖象如下,結(jié)合圖象,設(shè)函數(shù)F(x)=f(x)﹣a(0<a<1)的零點分別為x1,x2,x3,x4,x5,則x1+x2=﹣6,x4+x5=6,﹣log0.5(﹣x3+1)=a,x3=1﹣2a,故x1+x2+x3+x4+x5=﹣6+6+1﹣2a=1﹣2a,∵關(guān)于x的方程f(x)﹣a=0(0<a<1)所有根之和為1﹣,∴a=故答案為.點睛:函數(shù)的零點或方程的根的問題,一般以含參數(shù)的三次式、分式、以e為底的指數(shù)式或?qū)?shù)式及三角函數(shù)式結(jié)構(gòu)的函數(shù)零點或方程根的形式出現(xiàn),一般有下列兩種考查形式:(1)確定函數(shù)零點、圖象交點及方程根的個數(shù)問題;(2)應(yīng)用函數(shù)零點、圖象交點及方程解的存在情況,求參數(shù)的值或取值范圍問題研究方程根的情況,可以通過導數(shù)研究函數(shù)的單調(diào)性、最值、函數(shù)的變化趨勢等,根據(jù)題目要求,通過數(shù)形結(jié)合的思想去分析問題,可以使得問題的求解有一個清晰、直觀的整體展現(xiàn).同時在解題過程中要注意轉(zhuǎn)化與化歸、函數(shù)與方程、分類討論思想的應(yīng)用12、②④【解析】根據(jù)三角函數(shù)的性質(zhì),依次分析各選項即可得答案.【詳解】解:①因為,故不存在實數(shù),使得成立,錯誤;②函數(shù),由于是偶函數(shù),故是偶函數(shù),正確;③若,均為第一象限角,顯然,故錯誤;④當時,,由于是函數(shù)的一條對稱軸,故是函數(shù)的一條對稱軸方程,正確.故正確的命題是:②④故答案為:②④13、#0.3【解析】利用“1”的代換,構(gòu)造齊次式方程,再代入求解.【詳解】,故答案為:14、【解析】由系數(shù)為1解出的值,再由單調(diào)性確定結(jié)論【詳解】由題意,解得或,若,則函數(shù)為,在上遞增,不合題意若,則函數(shù)為,滿足題意故答案為:15、【解析】由基本不等式及二次函數(shù)的性質(zhì)可得,結(jié)合等號成立的條件可得,即可得解.【詳解】由題意,,因為,當且僅當時,等號成立;,當且僅當時,等號成立;所以,又x0R,使得,所以,所以.故答案為:.【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方16、【解析】圖像陰影部分對應(yīng)的集合為,,故,故填.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析.【解析】(1)由3=22-12即可證得;(2)設(shè)4k-2∈A,則存在m,n∈Z,使4k-2=m2-n2=(m+n)(m-n)成立,分當m,n同奇或同偶時和當m,n一奇,一偶時兩種情況進行否定即可.試題解析:(1)∵3=22-12,3∈A;(2)設(shè)4k-2∈A,則存在m,n∈Z,使4k-2=m2-n2=(m+n)(m-n)成立,1、當m,n同奇或同偶時,m-n,m+n均為偶數(shù),∴(m-n)(m+n)為4的倍數(shù),與4k-2不是4的倍數(shù)矛盾2、當m,n一奇,一偶時,m-n,m+n均為奇數(shù),∴(m-n)(m+n)為奇數(shù),與4k-2是偶數(shù)矛盾綜上4k-2不屬于A18、(1)1;(2)見解析;(3)【解析】(1)根據(jù)f(-x)=-f(x)代入求得a值;(2)f(x)是定義域R上的單調(diào)減函數(shù),利用定義證明即可;(3)根據(jù)題意把不等式化為t2-4t>k,求出f(t)=t2-4t的最小值,即可得出k的取值范圍【詳解】(1)函數(shù)f(x)=-,x∈R,且f(-x)=-f(x),∴-=-+,∴a=+=+=1;(2)f(x)=-是定義域R上的單調(diào)減函數(shù),證明如下:任取x1、x2∈R,且x1<x2,則f(x1)-f(x2)=(-)-(-)=-=,由(+1)(+1)>0,當x1<x2時,<,∴->0,∴f(x1)>f(x2),∴f(x)是定義域R上的單調(diào)減函數(shù);(3)對任意的t∈R,不等式f(t2-4t)+f(-k)<0恒成立,則f(t2-4t)<-f(-k)=f(k),根據(jù)f(x)是定義域R上的單調(diào)減函數(shù),得t2-4t>k,設(shè)g(t)=t2-4t,t∈R,則g(t)=(t-2)2-4≥-4,∴k的取值范圍是k<-4【點睛】本題考查了函數(shù)的奇偶性與單調(diào)性應(yīng)用問題,也考查了不等式恒成立問題,是中檔題19、(1);(2)-1,2;(3)【解析】(1)利用配方法求二次函數(shù)值域即可;(2)由的零點即是的根,再解方程即可;(3)由“三個二次”的關(guān)系,即是函數(shù)的圖象在y軸下方,觀察圖像即可得解.【詳解】解:(1)將函數(shù)化為完全平方式,得,故函數(shù)的值域;(2)的零點即是的根,令,解方程得方程的根為-1和2,故得函數(shù)的零點-1,2;(3)由圖得即是函數(shù)圖象在y軸下方,時x的取值范圍即在兩根之間,故x的取值范圍是.【點睛】本題考查了二次函數(shù)值域的求法,重點考查了“三個二次”的關(guān)系,屬中檔題.20、(1)(2)(3)當時,方程有一個根;當時,方程沒有根;當或或時,方程有兩個根;當時,方程有三個根;當時,方程有四個根【解析】(1)利用偶函數(shù)滿足,求出的值;(2)對函數(shù)變形后利用二次函數(shù)的最值求的值;(3)定義法得到的單調(diào)性,方程通過換元后得到的根的情況,通過分類討論最終求出結(jié)果.【小問1詳解】由題意得:,即,所以,其中,∴,解得:【小問2詳解】,∴,故函數(shù)的最小值為,令,故的最小值為,等價于,解得:或,無解綜上:【小問3詳解】由,令,,有由,有,,可得,可知函數(shù)為增函數(shù),故當時,函數(shù)單調(diào)遞增,由函數(shù)為偶函數(shù),可知函數(shù)的增區(qū)間為,減區(qū)間為,令,有,方程(記為方程①)可化為,整理為:(記為方程②),,當時,有,此時方程②無解,可得方程①無解;當時,時,方程②的解為,可得方程①僅有一個解為;時,方程②的解為,可得方程①有兩個解;當時,可得或,1°當方程②有零根時,,此時方程②還有一根為,可得此時方程①有三個解;2°當方程②有兩負根時,可得,不可能;3°當方程②有兩正根時,可得:,又由,可得,此時方程①有四個根;4°當方程②有一正根一負根時,,可得:或,又由,可得或,此時方程①有兩個根,由上知:當時,方程①有一個根;當時,方程①沒有根;當或或時,方程①有兩個根;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- JJF(陜) 079-2021 瀝青延度儀校準規(guī)范
- 《高層分析》課件
- 杭電電子設(shè)計課件驅(qū)動電路設(shè)計
- 道路運輸設(shè)備承攬合同三篇
- 主題教育活動的創(chuàng)新設(shè)計計劃
- WS-1紙張濕強劑相關(guān)行業(yè)投資規(guī)劃報告范本
- PMMA再生料相關(guān)行業(yè)投資方案
- 幼兒園心理健康宣傳計劃
- 創(chuàng)造性思維下的新年目標計劃
- 學校秋季環(huán)境美化活動計劃
- 政府采購評審專家考試試題庫(完整版)
- 四川省成都市2023-2024學年六年級上學期語文期末試卷(含答案)2
- 行政事業(yè)單位內(nèi)部控制規(guī)范專題講座
- 唐山房地產(chǎn)市場月報2024年08月
- 2024年變壓器安裝合同
- 端午節(jié)粽子購銷合同
- 污水站托管運營合同范本
- 校園文明值周總結(jié)
- 2024年“農(nóng)業(yè)經(jīng)理人”職業(yè)技能大賽考試題庫500題(含答案)
- 省級“雙減”大單元作業(yè)設(shè)計四年級道德與法治上冊第二單元作業(yè)
- 五年級上冊數(shù)學說課稿《第4單元:第1課時 體驗事件發(fā)生的確定性和不確定性》人教新課標
評論
0/150
提交評論