2025屆湖北省竹溪一中、竹山一中等三校數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2025屆湖北省竹溪一中、竹山一中等三校數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2025屆湖北省竹溪一中、竹山一中等三校數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2025屆湖北省竹溪一中、竹山一中等三校數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2025屆湖北省竹溪一中、竹山一中等三校數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆湖北省竹溪一中、竹山一中等三校數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“存在,”的否定是()A.存在, B.存在,C.對任意, D.對任意,2.在等差數(shù)列中,若,且前n項和有最大值,則使得的最大值n為()A.15 B.16C.17. D.183.已知函數(shù),若,則等于()A. B.1C.ln2 D.e4.在等比數(shù)列{an}中,a1=8,a4=64,則a3等于()A.16 B.16或-16C.32 D.32或-325.已知點B是A(3,4,5)在坐標平面xOy內(nèi)的射影,則||=()A. B.C.5 D.56.已知、是橢圓和雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,則()A.2 B.3C.4 D.57.過點且與橢圓有相同焦點的雙曲線方程為()A B.C. D.8.已知A,B,C,D是同一球面上的四個點,其中是正三角形,平面,,則該球的表面積為()A. B.C. D.9.函數(shù)的單調(diào)遞減區(qū)間為()A. B.C. D.10.甲、乙、丙、丁四人站成一列,要求甲站在最前面,則不同的排法有()A.24種 B.6種C.4種 D.12種11.設、分別為具有公共焦點與的橢圓和雙曲線的離心率,為兩曲線的一個公共點,且滿足,則的值為()A. B.C. D.12.拋物線的焦點到準線的距離為()A. B.C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.如圖,一個酒杯的內(nèi)壁的軸截面是拋物線的一部分,杯口寬cm,杯深8cm,稱為拋物線酒杯.①在杯口放一個表面積為的玻璃球,則球面上的點到杯底的最小距離為______cm;②在杯內(nèi)放入一個小的玻璃球,要使球觸及酒杯底部,則玻璃球的半徑的取值范圍為______(單位:cm)14.已知直線與圓交于兩點,則面積的最大值為__________.15.已知直線l的方向向量,平面的法向量,若,則______16.已知雙曲線的兩個焦點分別為,,為雙曲線上一點,且,則的值為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線和的交點為P,求:(1)過點P且與直線垂直的直線l的方程;(2)以點P為圓心,且與直線相交所得弦長為12的圓的方程;(3)從下面①②兩個問題中選一個作答,①若直線l過點,且與兩坐標軸的正半軸所圍成的三角形面積為,求直線l的方程②求圓心在直線上,與x軸相切,被直線截得的弦長的圓的方程注:如果選擇兩個問題分別作答,按第一個計分18.(12分)如圖,在四棱柱中,平面,底面ABCD滿足∥BC,且(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.19.(12分)記為等差數(shù)列的前n項和,已知.(1)求的通項公式;(2)求的最小值.20.(12分)已知圓.(1)過點作圓的切線,求切線的方程;(2)若直線過點且被圓截得的弦長為2,求直線的方程.21.(12分)已知為等差數(shù)列,是各項均為正數(shù)的等比數(shù)列的前n項和,,,,在①;②;③.這三個條件中任選其中一個,補充在上面的橫線上,并完成下面問題的解答(如果選擇多個條件解答,則按選擇的第一個解答計分)(1)求數(shù)列和的通項公式;(2)求數(shù)列的前n項和.22.(10分)已知直線過點(1)若直線與直線垂直,求直線的方程;(2)若直線在兩坐標軸的截距相等,求直線的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】特稱命題的否定:將存在改任意并否定原結(jié)論,即可知正確答案.【詳解】由特稱命題的否定為全稱命題,知:原命題的否定為:對任意,.故選:D2、A【解析】由題可得,則,可判斷,,即可得出結(jié)果.【詳解】前n項和有最大值,,,,,,,使得的最大值n為15.故選:A.【點睛】本題考查等差數(shù)列前n項和的有關判斷,解題的關鍵是得出.3、D【解析】求導,由得出.【詳解】,故選:D4、C【解析】首先根據(jù)a4=a1q3,求得q=2,再由a3=即可得解.【詳解】由a4=a1q3,得q3=8,即q=2,所以a3==32.故選:C5、C【解析】先求出B(3,4,0),由此能求出||【詳解】解:∵點B是點A(3,4,5)在坐標平面Oxy內(nèi)的射影,∴B(3,4,0),則||==5故選:C6、C【解析】依據(jù)橢圓和雙曲線定義和題給條件列方程組,得到關于橢圓的離心率和雙曲線的離心率的關系式,即可求得的值.【詳解】設橢圓的長軸長為,雙曲線的實軸長為,令,不妨設則,解之得代入,可得整理得,即,也就是故選:C7、D【解析】設雙曲線的方程為,再代點解方程即得解.【詳解】解:由得,所以橢圓的焦點為.設雙曲線的方程為,因為雙曲線過點,所以.所以雙曲線的方程為.故選:D8、C【解析】由題意畫出幾何體的圖形,把、、、擴展為三棱柱,上下底面中心連線的中點與的距離為球的半徑,由此能求出球的表面積【詳解】把、、、擴展為三棱柱,上下底面中心連線的中點與的距離為球的半徑,,,是正三角形,,,球的表面積為故選:C9、A【解析】先求定義域,再由導數(shù)小于零即可求得函數(shù)的單調(diào)遞減區(qū)間.【詳解】由得,所以函數(shù)的定義域為,又,因為,所以由得,解得,所以函數(shù)的單調(diào)遞減區(qū)間為.故選:A.10、B【解析】由已知可得只需對剩下3人全排即可【詳解】解:甲、乙、丙、丁四人站成一列,要求甲站在最前面,則只需對剩下3人全排即可,則不同的排法共有,故選:B11、A【解析】設橢圓的長半軸長為,雙曲線的實半軸長為,不妨設,利用橢圓和雙曲線的定義可得出,再利用勾股定理可求得結(jié)果.【詳解】設橢圓的長半軸長為,雙曲線的實半軸長為,不妨設,由橢圓和雙曲線的定義可得,所以,,設,因為,則,由勾股定理得,即,整理得,故.故選:A.12、B【解析】由可得拋物線標椎方程為:,由焦點和準線方程即可得解.【詳解】由可得拋物線標準方程為:,所以拋物線的焦點為,準線方程為,所以焦點到準線的距離為,故選:B【點睛】本題考了拋物線標準方程,考查了焦點和準線相關基本量,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】根據(jù)題意,,進而得,,故最小距離為;進而建立坐標系,得拋物線方程為,當杯內(nèi)放入一個小的玻璃球,要使球觸及酒杯底部,此時設玻璃球軸截面所在圓的方程為,進而只需滿足拋物線上的點到圓心的距離大于等于半徑恒成立,再根據(jù)幾何關系求解即可.【詳解】因為杯口放一個表面積為的玻璃球,所以球的半徑為,又因為杯口寬cm,所以如圖1所示,有,所以,所以,所以,又因為杯深8cm,即故最小距離為如圖1所示,建立直角坐標系,易知,設拋物線的方程為,所以將代入得,故拋物線方程為,當杯內(nèi)放入一個小的玻璃球,要使球觸及酒杯底部,如圖2,設玻璃球軸截面所在圓的方程為,依題意,需滿足拋物線上的點到圓心的距離大于等于半徑恒成立,即,則有恒成立,解得,可得.所以玻璃球的半徑的取值范圍為.故答案為:;【點睛】本題考查拋物線的應用,考查數(shù)學建模能力,運算求解能力,是中檔題.本題第二問解題的關鍵在于設出球觸及酒杯底部的軸截面圓的方程,進而將問題轉(zhuǎn)化為拋物線上的點到圓心的距離大于等于半徑恒成立求解.14、##【解析】先求出的范圍,再利用面積公式可求面積的最大值.【詳解】圓即為,直線為過原點的直線,如圖,連接,故,解得,此時,故的面積為,當且僅當時等號成立,此時即,故答案為:.15、【解析】由,可得∥,從而可得,代入坐標列方程可求出,從而可求出【詳解】因為直線l的方向向量,平面的法向量,,所以∥,所以存在唯一實數(shù),使,所以,所以,解得,所以,故答案為:16、2【解析】求得雙曲線的a,b,c,不妨設P為雙曲線右支上的點,|PF1|=m,|PF2|=n,利用雙曲線的定義、余弦定理列出方程組,求出mn即可.【詳解】雙曲線的a=2,b=1,c=,不妨設P為雙曲線右支上的點,|PF1|=m,|PF2|=n,則,①由余弦定理可得,②聯(lián)立①②可得故答案為:2三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)答案見解析【解析】(1)聯(lián)立方程組求得交點的坐標,結(jié)合直線與直線垂直,求得直線的斜率為,利用直線的點斜式,即可求解;(2)先求得點到直線的距離為,由圓的的垂徑定理列出方程求得圓的半徑,即可求解;(3)若選①:設直線l的的斜率為,得到,結(jié)合題意列出方程,求得的值,即可求解;若選②,設所求圓的圓心為,半徑為,得到,利用圓的垂徑定理列出方程求得的值,即可求解.【小問1詳解】解:由直線和的交點為P,聯(lián)立方程組,解得,即,因為直線與直線垂直,所以直線的斜率為,所以過點且與直線垂直的直線方程為,即.【小問2詳解】解:因為點到直線的距離為,設所求圓的半徑為,由圓的的垂徑定理得,弦長,解得,所以所求圓的方程為.【小問3詳解】解:若選①:直線l過點,且與兩坐標軸的正半軸所圍成的三角形面積為,設直線l的的斜率為,可得直線的方程為,即,則直線與坐標軸的交點分別為,由,解得或,所以所求直線的方程為或.若選②,設所求圓的圓心為,半徑為,因為圓與x軸相切,可得,又由圓心到直線的距離為,利用圓的垂徑定理可得,即,解得,即圓心坐標為或,所以所求圓的方程為或.18、(Ⅰ)證明見解析;(Ⅱ)【解析】(Ⅰ)證明,根據(jù)得到,得到證明.(Ⅱ)如圖所示,分別以為軸建立空間直角坐標系,平面的法向量,,計算向量夾角得到答案.【詳解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如圖所示:分別以為軸建立空間直角坐標系,則,,,,.設平面的法向量,則,即,取得到,,設直線與平面所成角為故.【點睛】本題考查了線面垂直,線面夾角,意在考查學生的空間想象能力和計算能力.19、(1)(2)【解析】(1)設數(shù)列的公差為d,由,利用等差數(shù)列的前n項和公式求解;(2)利用等差數(shù)列的前n項和公式結(jié)合二次函數(shù)的性質(zhì)求解.【小問1詳解】解:設數(shù)列的公差為d,∵,∴,解得2,∴.【小問2詳解】由(1)知2,∴,,,∴當時,取得最小值-16.20、(1);(2)或.【解析】(1)根據(jù)直線與圓相切,求得切線的斜率,利用點斜式即可寫出切線方程;(2)利用弦長公式,結(jié)合已知條件求得直線的斜率,即可求得直線方程.【小問1詳解】圓,圓心,半徑,又點的坐標滿足圓方程,故可得點在圓上,則切線斜率滿足,又,故滿足題意的切線斜率,則過點的切線方程為,即.【小問2詳解】直線過點,若斜率不存在,此時直線的方程為,將其代入可得或,故直線截圓所得弦長為滿足題意;若斜率存在時,設直線方程為,則圓心到直線的距離,由弦長公式可得:,解得,也即,解得,則此時直線的方程為:.綜上所述,直線的方程為或.21、(1)無論選擇哪個條件答案均為;(2).【解析】(1)先根據(jù)題設條件求解,然后根據(jù)選擇的條件求解;(2)先求,然后利用分組求和的方法求解.【小問1詳解】設的公差為,因為,;所以,解得,所以.選①:設的公比為,則;由題意得,因為,所以,解得或(舍);所以.選②:由,當時,,因為,所以;當時,,整理得;即是首項和公比均為2的等比數(shù)列,所以.選③:因為,,所以,解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論