2025屆云南省賓川縣高一上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第1頁
2025屆云南省賓川縣高一上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第2頁
2025屆云南省賓川縣高一上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第3頁
2025屆云南省賓川縣高一上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第4頁
2025屆云南省賓川縣高一上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆云南省賓川縣高一上數(shù)學(xué)期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的最大值是()A. B.1C. D.22.直線與圓相切,則的值為()A. B.C. D.3.下列命題中,錯誤的是()A.平行于同一條直線的兩條直線平行B.已知直線垂直于平面內(nèi)的任意一條直線,則直線垂直于平面C.已知直線平面,直線,則直線D.已知為直線,、為平面,若且,則4.函數(shù)在一個周期內(nèi)的圖象如圖所示,則其表達式為A. B.C. D.5.設(shè)平面向量,則A. B.C. D.6.計算sin(-1380°)的值為()A. B.C. D.7.在平面直角坐標系中,若角的終邊經(jīng)過點,則()A. B.C. D.8.為了得到函數(shù)的圖象,只需將函數(shù)的圖象上所有的點()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位9.三個數(shù)的大小關(guān)系為()A. B.C. D.10.已知角頂點與原點重合,始邊與軸的正半軸重合,點在角的終邊上,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),且,則a的取值范圍為________f(x)的最大值與最小值和為________.12.已知圓心角為的扇形的面積為,則該扇形的半徑為____.13.寫出一個最小正周期為2的奇函數(shù)________14.若是兩個相交平面,則在下列命題中,真命題的序號為________.(寫出所有真命題的序號)①若直線,則在平面內(nèi),一定不存在與直線平行的直線②若直線,則在平面內(nèi),一定存在無數(shù)條直線與直線垂直③若直線,則在平面內(nèi),不一定存在與直線垂直的直線④若直線,則在平面內(nèi),一定存在與直線垂直的直線15.兩平行直線與之間的距離______.16.已知,,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知是定義在上的偶函數(shù),且時,(1)求函數(shù)的表達式;(2)判斷并證明函數(shù)在區(qū)間上的單調(diào)性18.已知函數(shù)(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;(2)將函數(shù)的圖像向左平移單位長度,再將所得圖像上各點的橫坐標縮短為原來的,縱坐標不變,得到函數(shù)的圖像,求在上的值域19.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求的單調(diào)遞增區(qū)間.20.已知定義在上的函數(shù)為常數(shù)).(1)求的奇偶性;(2)已知在上有且只有一個零點,求實數(shù)a的值.21.已知不等式的解集為(1)求a的值;(2)若不等式的解集為R,求實數(shù)m的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】利用正余弦的差角公式展開化簡即可求最值.【詳解】,∵,∴函數(shù)的最大值是.故選:C.2、D【解析】由圓心到直線的距離等于半徑可得【詳解】由題意圓標準方程為,圓心坐標為,半徑為1,所以,解得故選:D3、C【解析】由平行線的傳遞性可判斷A;由線面垂直的定義可判斷B;由線面平行的定義可判斷C;由線面平行的性質(zhì)和線面垂直的性質(zhì),結(jié)合面面垂直的判定定理,可判斷D.【詳解】解:由平行線的傳遞性可得,平行于同一條直線的兩條直線平行,故A正確;由線面垂直的定義可得,若直線垂直于平面內(nèi)的任意一條直線,則直線垂直于平面,故B正確;由線面平行的定義可得,若直線平面,直線,則直線或,異面,故C錯誤;若,由線面平行的性質(zhì),可得過的平面與的交線與平行,又,可得,結(jié)合,可得,故D正確.故選:C.4、A【解析】由圖象得,周期,所以,故又由條件得函數(shù)圖象的最高點為,所以,故,又,所以,故函數(shù)的解析式為.選A5、A【解析】∵∴故選A;【考點】:此題重點考察向量加減、數(shù)乘的坐標運算;【突破】:準確應(yīng)用向量的坐標運算公式是解題的關(guān)鍵;6、D【解析】根據(jù)誘導(dǎo)公式以及特殊角三角函數(shù)值求結(jié)果.【詳解】sin(-1380°)=sin(-1380°+1440°)=sin(60°)=故選:D【點睛】本題考查誘導(dǎo)公式以及特殊角三角函數(shù)值,考查基本求解能力,屬基礎(chǔ)題.7、A【解析】根據(jù)三角函數(shù)定義求解即可.【詳解】角的終邊經(jīng)過點,即,則.故選:A.8、A【解析】化簡函數(shù)的解析式,根據(jù)函數(shù)圖象變換的知識確定正確選項.【詳解】,將函數(shù)的圖象上所有的點向左平移個單位,得到.故選:A9、A【解析】利用指數(shù)對數(shù)函數(shù)的性質(zhì)可以判定,從而做出判定.【詳解】因為指數(shù)函數(shù)是單調(diào)增函數(shù),是單調(diào)減函數(shù),對數(shù)函數(shù)是單調(diào)減函數(shù),所以,所以,故選:A10、D【解析】先根據(jù)三角函數(shù)的定義求出,然后采用弦化切,代入計算即可【詳解】因為點在角的終邊上,所以故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、①.②.2【解析】由結(jié)合,即可求出a的取值范圍;由,知關(guān)于點成中心對稱,即可求出f(x)的最大值與最小值和.【詳解】由,,所以,則故a的取值范圍為.第(2)空:由,知關(guān)于點成中心對稱圖形,所以.故答案為:;.12、4【解析】由扇形的面積公式列方程即可求解.【詳解】扇形的面積,即,解得:.故答案為:.13、【解析】根據(jù)奇函數(shù)性質(zhì)可考慮正弦型函數(shù),,再利用周期計算,選擇一個作答即可.【詳解】由最小正周期為2,可考慮三角函數(shù)中的正弦型函數(shù),,滿足,即是奇函數(shù);根據(jù)最小正周期,可得.故函數(shù)可以是中任一個,可取.故答案為:.14、②④【解析】①當時,在平面內(nèi)存在與直線平行的直線.②若直線,則平面的交線必與直線垂直,而在平面內(nèi)與平面的交線平行的直線有無數(shù)條,因此在平面內(nèi),一定存在無數(shù)條直線與直線垂直.③當直線為平面的交線時,在平面內(nèi)一定存在與直線垂直的直線.④當直線為平面的交線,或與交線平行,或垂直于平面時,顯然在平面內(nèi)一定存在與直線垂直的直線.當直線為平面斜線時,過直線上一點作直線垂直平面,設(shè)直線在平面上射影為,則平面內(nèi)作直線垂直于,則必有直線垂直于直線,因此在平面內(nèi),一定存在與直線垂直的直線考點:直線與平面平行與垂直關(guān)系15、2【解析】根據(jù)平行線間距離公式可直接求解.【詳解】直線與平行由平行線間距離公式可得故答案為:2【點睛】本題考查了平行線間距離公式的簡單應(yīng)用,屬于基礎(chǔ)題.16、【解析】根據(jù)已知條件求得的值,由此求得的值.【詳解】依題意,兩邊平方得,而,所以,所以.由解得,所以.故答案為:【點睛】知道其中一個,可通過同角三角函數(shù)的基本關(guān)系式求得另外兩個,在求解過程中要注意角的范圍.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)單調(diào)減函數(shù),證明見解析【解析】(1)設(shè),則,根據(jù)是偶函數(shù),可知,然后分兩段寫出函數(shù)解析式即可;(2)利用函數(shù)單調(diào)性的定義,即可判斷函數(shù)的單調(diào)性,并可證明結(jié)果【小問1詳解】解:設(shè),則,,因為函數(shù)為偶函數(shù),所以,即,所以【小問2詳解】解:設(shè),,∵,∴,,∴,∴在為單調(diào)減函數(shù)18、(1)最小正周期為,單調(diào)遞減區(qū)間為,;(2).【解析】(1)利用二倍角正余弦公式及輔助角公式可得,再根據(jù)正弦型函數(shù)的性質(zhì)求最小正周期和遞減區(qū)間.(2)由(1)及圖象平移有,應(yīng)用整體法及正弦函數(shù)的性質(zhì)求區(qū)間值域.【小問1詳解】由題設(shè),,所以的最小正周期為,令,,解得,,因此,函數(shù)的單調(diào)遞減區(qū)間為,【小問2詳解】由(1)知,,將函數(shù)的圖象向左平移個單位長度,可得的圖象,再將所得圖象上各點的橫坐標縮短為原來的,縱坐標不變,得到的圖象,∵,則,∴,則∴在上的值域為19、(1);(2),.【解析】(1)利用三角恒等變換公式化簡f(x),即可求正弦型函數(shù)最小正周期;(2)根據(jù)正弦函數(shù)的單調(diào)遞增區(qū)間即可求復(fù)合函數(shù)f(x)的單調(diào)遞增區(qū)間.【小問1詳解】,∴,即函數(shù)的最小正周期為.【小問2詳解】令,,解得,,即函數(shù)的單調(diào)遞增區(qū)間為,.20、(1)偶函數(shù),證明見解析,(2)【解析】(1)利用定義判斷函數(shù)的奇偶性;(2)利用該函數(shù)的對稱性,數(shù)形結(jié)合得到實數(shù)a的值.【詳解】(1)函數(shù)的定義域為R,,即,∴為偶函數(shù),(2)y=f(x)的圖象關(guān)于y軸對稱,由題意知f(x)=0只有x=0這一個零點,把(0,0)代入函數(shù)表達式得:a2+2a﹣3=0,解得:a=﹣3,或a=1,當a=1時,在上單調(diào)遞增,∴此時顯然符合條件;當a=﹣3時,,,即,即在上存在零點,知f(x)至少有三個根,不符合所以,符合條件的實數(shù)a的值為1【點睛】本題主要考查函數(shù)零點的概念,要注意函數(shù)的零點不是點,而是函數(shù)f(x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論