甘肅省慶陽市鎮(zhèn)原縣鎮(zhèn)原中學2025屆數(shù)學高二上期末達標檢測試題含解析_第1頁
甘肅省慶陽市鎮(zhèn)原縣鎮(zhèn)原中學2025屆數(shù)學高二上期末達標檢測試題含解析_第2頁
甘肅省慶陽市鎮(zhèn)原縣鎮(zhèn)原中學2025屆數(shù)學高二上期末達標檢測試題含解析_第3頁
甘肅省慶陽市鎮(zhèn)原縣鎮(zhèn)原中學2025屆數(shù)學高二上期末達標檢測試題含解析_第4頁
甘肅省慶陽市鎮(zhèn)原縣鎮(zhèn)原中學2025屆數(shù)學高二上期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

甘肅省慶陽市鎮(zhèn)原縣鎮(zhèn)原中學2025屆數(shù)學高二上期末達標檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.圓與圓的公切線的條數(shù)為()A.1 B.2C.3 D.42.有7名同學參加百米競賽,預賽成績各不相同,取前3名參加決賽,小明同學已經(jīng)知道了自己的成績,為了判斷自己是否能進入決賽,他還需要知道7名同學成績的()A.平均數(shù) B.眾數(shù)C.中位數(shù) D.方差3.在中,三個內(nèi)角A,B,C的對邊分別為a,b,c,若,,,則的面積為()A. B.1C. D.24.已知直線與橢圓:()相交于,兩點,且線段的中點在直線:上,則橢圓的離心率為()A. B.C. D.5.有6本不同的書,按下列方式進行分配,其中分配種數(shù)正確的是()A.分給甲、乙、丙三人,每人各2本,有15種分法;B.分給甲、乙、丙三人中,一人4本,另兩人各1本,有180種分法;C.分給甲乙每人各2本,分給丙丁每人各1本,共有90種分法;D.分給甲乙丙丁四人,有兩人各2本,另兩人各1本,有1080種分法;6.從編號分別為,,,,的五個大小完全相同的小球中,隨機取出三個小球,則恰有兩個小球編號相鄰的概率為()A. B.C. D.7.已知向量與平行,則()A. B.C. D.8.已知數(shù)列,,則下列說法正確的是()A.此數(shù)列沒有最大項 B.此數(shù)列的最大項是C.此數(shù)列沒有最小項 D.此數(shù)列的最小項是9.已知直線l1:y=x+2與l2:2ax+y﹣1=0垂直,則a=()A. B.C.﹣1 D.110.設,直線,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件11.已知,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知等差數(shù)列,,則公差d等于()A. B.C.3 D.-3二、填空題:本題共4小題,每小題5分,共20分。13.直線l過拋物線的焦點F,與拋物線交于A,B兩點,與其準線交于點C,若,則直線l的斜率為______.14.已知等差數(shù)列的通項公式為,那么它的前項和___________.15.甲乙參加摸球游戲,袋子中裝有3個黑球和1個白球,球的大小、形狀、質(zhì)量等均一樣,若從袋中有放回地取1個球,再取1個球,若取出的兩個球同色,則甲勝,若取出的兩個球不同色則乙勝,求乙獲勝的概率為_____16.已知,若在區(qū)間上有且只有一個極值點,則a的取值范圍是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在棱長為2的正方體中,E,F(xiàn)分別為AB,BC上的動點,且.(1)求證:;(2)當時,求點A到平面的距離.18.(12分)已知函數(shù)在處有極值.(1)求常數(shù)a,b的值;(2)求函數(shù)在上的最值.19.(12分)如圖,四棱臺的底面為正方形,面,(1)求證:平面;(2)若平面平面,求直線m與平面所成角的正弦值20.(12分)已知函數(shù)f(x)=x3+ax2+2,x=2是f(x)的一個極值點.(1)求實數(shù)a的值;(2)求f(x)在區(qū)間(-1,4]上的最大值和最小值.21.(12分)如圖,在四棱錐中,已知平面ABCD,為等邊三角形,,,.(1)證明:平面PAD;(2)若M是BP的中點,求二面角的余弦值.22.(10分)在等比數(shù)列{}中,(1),,求;(2),,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】公切線條數(shù)與圓與圓的位置關系是相關的,所以第一步需要判斷圓與圓的位置關系.【詳解】圓的圓心坐標為,半徑為3;圓的圓心坐標為,半徑為1,所以兩圓的心心距為,所以兩圓相離,公切線有4條.故選:D.2、C【解析】根據(jù)中位數(shù)的性質(zhì),結合題設按成績排序7選3,即可知還需明確的成績數(shù)據(jù)信息.【詳解】由題設,7名同學參加百米競賽,要取前3名參加決賽,則成績從高到低排列,確定7名同學成績的中位數(shù),即第3名的成績便可判斷自己是否能進入決賽.故選:C.3、C【解析】由余弦定理求出,利用正弦定理將邊化角,再根據(jù)二倍角公式得到,即可得到,最后利用面積公式計算可得;【詳解】解:因為,又,所以,因為,所以,所以,因為,所以,即,所以或,即或(舍去),所以,因為,所以,所以;故選:C4、A【解析】將直線代入橢圓方程整理得關于的方程,運用韋達定理,求出中點坐標,再由條件得到,再由,,的關系和離心率公式,即可求出離心率.【詳解】解:將直線代入橢圓方程得,,即,設,,,,則,即中點的橫坐標是,縱坐標是,由于線段的中點在直線上,則,又,則,,即橢圓的離心率為.故選:A5、D【解析】根據(jù)題意,分別按照選項說法列式計算驗證即可做出判斷.【詳解】選項A,6本不同的書分給甲、乙、丙三人,每人各2本,有種分配方法,故該選項錯誤;選項B,6本不同的書分給甲、乙、丙三人,一人4本,另兩人各1本,先將6本書分成4-1-1的3組,再將三組分給甲乙丙三人,有種分配方法,故該選項錯誤;選項C,6本不同的書分給甲乙每人各2本,有種方法,其余分給丙丁每人各1本,有種方法,所以不同的分配方法有種,故該選項錯誤;選項D,先將6本書分為2-2-1-14組,再將4組分給甲乙丙丁4人,有種方法,故該選項正確.故選:D.6、C【解析】利用古典概型計算公式計算即可【詳解】從編號分別為,,,,的五個大小完全相同的小球中,隨機取出三個小球共有種不同的取法,恰好有兩個小球編號相鄰的有:,共有6種所以概率為故選:C7、D【解析】根據(jù)兩向量平行可求得、的值,即可得出合適的選項.【詳解】由已知,解得,,則.故選:D.8、B【解析】令,則,,然后利用函數(shù)的知識可得答案.【詳解】令,則,當時,當時,,由雙勾函數(shù)的知識可得在上單調(diào)遞增,在上單調(diào)遞減所以當即時,取得最大值,所以此數(shù)列的最大項是,最小項為故選:B9、A【解析】利用兩直線垂直斜率關系,即可求解.【詳解】直線l1:y=x+2與l2:2ax+y﹣1=0垂直,.故選:A【點睛】本題考查兩直線垂直間的關系,屬于基礎題.10、A【解析】由可求得實數(shù)的值,再利用充分條件、必要條件的定義判斷可得出結論.【詳解】若,則,解得或,因此,“”是“”的充分不必要條件.故選:A.11、A【解析】由,結合基本不等式可得,由此可得,由此說明“”是“”的充分條件,再通過舉反例說明“”不是“”的必要條件,由此確定正確選項.【詳解】∵,∴(當且僅當時等號成立),(當且僅當時等號成立),∴(當且僅當時等號成立),若,則,∴,所以“”是“”的充分條件,當時,,此時,∴“”不是“”的必要條件,∴“”是“”的充分不必要條件,故選:A.12、B【解析】根據(jù)題意,利用公式,即可求解.【詳解】由題意,等差數(shù)列,,可得等差數(shù)列的公差.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由拋物線方程求出焦點坐標與準線方程,設直線為,、,即可得到的坐標,再聯(lián)立直線與拋物線方程,消元列出韋達定理,表示出、的坐標,根據(jù)得到方程,求出,即可得解;【詳解】解:拋物線方程為,則焦點,準線為,設直線為,、,則,由,消去得,所以,,則,,因為,所以,所以,所以,解得,所以,即直線為,所以直線的斜率為;故答案為:14、【解析】由題意知等差數(shù)列的通項公式,即可求出首項,再利用等差數(shù)列求和公式即可得到答案.【詳解】已知等差數(shù)列的通項公式為,..故答案為:.15、##0.375【解析】先算出有放回地取兩次的取法數(shù),再算出取出兩球不同色的取法數(shù),根據(jù)古典概型的概率公式計算即可求得答案.【詳解】有放回地取兩球,共有種取法,兩次取球不同色的取法有種,故乙獲勝的概率為,故答案為:16、【解析】求導得,進而根據(jù)題意在上有且只有一個變號零點,再根據(jù)零點的存在性定理求解.【詳解】解:,∵在區(qū)間上有且只有一個極值點,∴在上有且只有一個變號零點,∴,解得∴a的取值范圍是.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)如圖,以為軸,為軸,為軸建立空間直角坐標系,利用空間向量法分別求出和,再證明即可;(2)利用空間向量的數(shù)量積求出平面的法向量,結合求點到面距離的向量法即可得出結果.【小問1詳解】證明:如圖,以為軸,為軸,為軸,建立空間直角坐標系,則,,,,所以,,所以,故,所以;【小問2詳解】當時,,,,,則,,,設是平面的法向量,則由,解得,取,得,設點A到平面的距離為,則,所以點A到平面的距離為.18、(1);(2)最大值為-1,最值為-5.【解析】(1)根據(jù)給定條件結合函數(shù)的導數(shù)建立方程,求解方程并驗證作答.(2)利用導數(shù)探討函數(shù)在上的單調(diào)性即可計算作答.【小問1詳解】依題意:,則,解得:,當時,,當時,,當時,,則函數(shù)在處有極值,所以.【小問2詳解】由(1)知:,,,當時,,當時,,因此,在上單調(diào)遞增,在上單調(diào)遞減,于是得,而,,則,所以函數(shù)在上的最大值為-1,最值為-5.19、(1)證明見解析;(2).【解析】(1):連結交交于點O,連結,,通過四棱臺的性質(zhì)以及給定長度證明,從而證出,利用線面平行的判定定理可證明面;(2)利用線面平行的性質(zhì)定理以及基本事實可證明,即求與平面所成角的正弦值;通過條件以及面面垂直的判定定理可證明面面,則為與平面所成角,利用余弦定理求出余弦值,即可求出正弦值.【詳解】(1)證明:連結交交于點O,連結,,由多面體為四棱臺可知四點共面,且面面,面面,面面,∴,∵和均為正方形,,∴,所以為平行四邊形,∴,面,面,∴平面(2)∵面,平面,平面,∴,又∵,∴∴求直線m與平面所成角可轉化為求與平面所成角,∵和均為正方形,,且,∴,,∴,又∵面,∴∴面,∴面面,由面面,設O在面的投影為M,則,∴為與平面所成角,由,可得,又∵,∴∴,直線m與平面所成角的正弦值為.【點睛】思路點睛:(1)找兩個平面的交線,可通過兩個平面的交點找到,也可利用線面平行的性質(zhì)找和交線的平行直線;(2)求直線和平面所成角,過直線上一點做平面的垂線,則垂足和斜足連線與直線所成角即為直線和平面所成角.20、(1);(2)最大值為18,最小值為.【解析】(1)解方程即得解;(2)利用導數(shù)求出函數(shù)的單調(diào)區(qū)間分析即得解.【小問1詳解】解:因為,所以,因為在處有極值,所以,即,所以.經(jīng)檢驗,當時,符合題意.所以.【小問2詳解】解:由(1)可知,所以,令,得,當時,由得,;由得,或.所以函數(shù)在上遞增,在上遞減,在上遞增,又.所以的最小值為,又,所以的最大值為,所以在的最大值為18,最小值為.21、(1)證明見解析(2)【解析】(1)根據(jù)條件先證明,再根據(jù)線面平行的判定定理證明平面PAD;(2)確定坐標原點,建立空間直角坐標系,從而求出相關的點的坐標,進而求得相關向量的坐標,再求相關平面的法向量,根據(jù)向量的夾角公式求得結果.【小問1詳解】證明:由已知為等邊三角形,且,所以又因為,,在中,,又,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論