版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆山東省威海市示范名校高二上數(shù)學期末質(zhì)量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在空間直角坐標系中,已知點A(1,1,2),B(-3,1,-2),則線段AB的中點坐標是()A.(-2,1,2) B.(-1,1,0)C.(-2,0,1) D.(-1,1,2)2.經(jīng)過兩點直線的傾斜角是()A. B.C. D.3.已知命題:,命題:,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.已知為橢圓的兩個焦點,過的直線交橢圓于兩點,若,則()A. B.C. D.5.已知p:,q:,那么p是q的()A.充要條件 B.必要不充分條件C.充分不必要條件 D.既不充分也不必要條件6.已知集合A=()A. B.C.或 D.7.某老師希望調(diào)查全校學生平均每天的自習時間.該教師調(diào)查了60位學生,發(fā)現(xiàn)他們每天的平均自習時間是3.5小時.這里的總體是()A.楊高的全校學生;B.楊高的全校學生的平均每天自習時間;C.所調(diào)查的60名學生;D.所調(diào)查的60名學生的平均每天自習時間.8.已知,分別是圓和圓上的動點,點在直線上,則的最小值是()A. B.C. D.9.若直線經(jīng)過,,兩點,則直線的傾斜角的取值范圍是()A. B.C. D.10.已知拋物線的焦點為,為拋物線上一點,為坐標原點,且,則()A.4 B.2C. D.11.設是定義在R上的函數(shù),其導函數(shù)為,滿足,若,則()A. B.C. D.a,b的大小無法判斷12.設等差數(shù)列前n項和是,若,則的通項公式可以是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若平面內(nèi)兩條直線,平行,則實數(shù)______14.已知雙曲線,(,)的左右焦點分別為,過的直線與圓相切,與雙曲線在第四象限交于一點,且有軸,則直線的斜率是___________,雙曲線的漸近線方程為___________.15.關于曲線C:1,有如下結(jié)論:①曲線C關于原點對稱;②曲線C關于直線x±y=0對稱;③曲線C是封閉圖形,且封閉圖形的面積大于2π;④曲線C不是封閉圖形,且它與圓x2+y2=2無公共點;⑤曲線C與曲線D:|x|+|y|=2有4個公共點,這4點構成正方形其中正確結(jié)論的個數(shù)是_____16.已知拋物線C:,經(jīng)過點P(4,1)的直線l與拋物線C相交于A,B兩點,且點P恰為AB的中點,F(xiàn)為拋物線的焦點,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設圓的圓心為A,直線l過點且與x軸不重合,l交圓A于C,D兩點,過B作AC的平行線交AD于點E(1)判斷與題中圓A的半徑的大小關系,并寫出點E的軌跡方程;(2)過點作斜率為,的兩條直線,分別交點E的軌跡于M,N兩點,且,證明:直線MN必過定點18.(12分)已知函數(shù).(1)當時,求曲線在點處的切線方程;(2)試討論函數(shù)的單調(diào)性.19.(12分)已知點和直線.(1)求以為圓心,且與直線相切的圓的方程;(2)過直線上一點作圓的切線,其中為切點,求四邊形PAMB的面積的最小值.20.(12分)已知雙曲線C:(,)的一條漸近線的方程為,雙曲線C的右焦點為,雙曲線C的左、右頂點分別為A,B(1)求雙曲線C的方程;(2)過右焦點F的直線l與雙曲線C的右支交于P,Q兩點(點P在x軸的上方),直線AP的斜率為,直線BQ的斜率為,證明:為定值21.(12分)已知兩點(1)求以線段為直徑的圓C的方程;(2)在(1)中,求過M點的圓C的切線方程22.(10分)如圖,已知橢圓:()的左、右焦點分別為、,離心率為.過的直線與橢圓的一個交點為,過垂直于的直線與橢圓的一個交點為,.(1)求橢圓的方程和點的軌跡的方程;(2)若曲線上的動點到直線:的最大距離為,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用中點坐標公式直接求解【詳解】在空間直角坐標系中,點,1,,,1,,則線段的中點坐標是,,,1,故選:B.2、B【解析】求出直線的斜率后可得傾斜角【詳解】經(jīng)過兩點的直線的斜率為,設該直線的傾斜角為,則,又,所以.故選:B3、B【解析】利用充分條件和必要條件的定義判斷.【詳解】因為命題:或,命題:,所以是的必要不充分條件,故選:B4、C【解析】根據(jù)橢圓的定義可得,由即可求解.【詳解】由,可得根據(jù)橢圓的定義,所以.故選:C5、C【解析】若p成立則q成立且若q成立不能得到p一定成立,p是q充分不必要條件.【詳解】因為>0,<1,所以若p:成立,一定成立,但q:成立,p:不一定成立,所以p是q的充分不必要條件.故選:C.6、A【解析】先求出集合,再根據(jù)集合的交集運算,即可求出結(jié)果.【詳解】因為集合,所以.故選:A.7、B【解析】由總體的概念可得答案.【詳解】某老師希望調(diào)查全校學生平均每天的自習時間,該教師調(diào)查了60位學生,發(fā)現(xiàn)他們每天的平均自習時間是3.5小時,這里的總體是全校學生平均每天的自習時間.故選:B.8、B【解析】由已知可得,,求得關于直線的對稱點為,則,計算即可得出結(jié)果.【詳解】由題意可知圓的圓心為,半徑,圓的圓心為,半徑設關于直線的對稱點為,則解得,則因為,分別在圓和圓上,所以,,則因為,所以故選:B.9、D【解析】應用兩點式求直線斜率得,結(jié)合及,即可求的范圍.【詳解】根據(jù)題意,直線經(jīng)過,,,∴直線的斜率,又,∴,即,又,∴;故選:D10、B【解析】依題意可得,設,根據(jù)可得,,根據(jù)為拋物線上一點,可得.【詳解】依題意可得,設,由得,所以,,所以,,因為為拋物線上一點,所以,解得.故選:B.【點睛】本題考查了平面向量加法的坐標運算,考查了求拋物線方程,屬于基礎題.11、A【解析】首先構造函數(shù),再利用導數(shù)判斷函數(shù)的單調(diào)性,即可判斷選項.【詳解】設,,所以函數(shù)在單調(diào)遞增,即,所以,那么,即.故選:A12、D【解析】根據(jù)題意可得公差的范圍,再逐一分析各個選項即可得出答案.【詳解】解:設等差數(shù)列的公差為,由,得,所以,故AB錯誤;若,則,與題意矛盾,故C錯誤;若,則,符合題意.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、-1或2【解析】根據(jù)兩直線平行,利用直線平行的條件列出方程解得答案.【詳解】∵,∴,解得或,經(jīng)驗證都符合題意,故答案為:-1或214、①.②.【解析】由題意,不妨設直線與圓相切于點,由可得,代入雙曲線方程,可得,因此,即得解【詳解】如圖所示,不妨設直線與圓相切于點,,由于代入進入,可得,漸近線方程為故答案為:,15、4【解析】直接利用曲線的性質(zhì),對稱性的應用可判斷①②;求出可判斷③;聯(lián)立方程,解方程組可判斷④⑤的結(jié)論【詳解】對于①,將方程中的x換為﹣x,y換為﹣y,方程不變,曲線C關于原點對稱,故①正確;對于②,將方程中的x換為﹣y,把y換成﹣x,方程不變,曲線C關于直線x±y=0對稱,故②正確;對于③,由方程得,故曲線C不是封閉圖形,故③錯誤;對于④,曲線C:,不是封閉圖形,聯(lián)立整理可得:,方程無解,故④正確;對于⑤,曲線C與曲線D:由于,解得,根據(jù)對稱性,可得公共點為,故曲線C與曲線D有四個交點,這4點構成正方形,故⑤正確故答案為:416、9【解析】過A、、作準線的垂線且分別交準線于點、、,根據(jù)拋物線的定義可知,由梯形的中位線的性質(zhì)得出,進而可求出的結(jié)果.【詳解】由拋物線,可知,則,所以拋物線的焦點坐標為,如圖,過點A作垂直于準線交準線于,過點作垂直于準線交準線于,過點作垂直于準線交準線于,由拋物線的定義可得,再根據(jù)為線段的中點,而四邊形為梯形,由梯形的中位線可知,則,所以.故答案為:9.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)與半徑相等,(2)證明見解析【解析】(1)依據(jù)橢圓定義去求點E的軌跡方程事半功倍;(2)直線MN要分為斜率存在的和不存在的兩種情況進行討論,由設而不求法把條件轉(zhuǎn)化為直線MN過定點的條件即可解決.【小問1詳解】圓即為,可得圓心,半徑,由,可得,由,可得,即為,即有,則,所以其與半徑相等.因為,故E的軌跡為以A,B為焦點的橢圓(不包括左右頂點),且有,,即,,,則點E的軌跡方程為;【小問2詳解】當直線MN斜率不存在時,設直線方程為,則,,,,則,∴,此時直線MN的方程為當直線MN斜率存在時,設直線方程為:,與橢圓方程聯(lián)立:,得,設,,有則將*式代入化簡可得:,即,∴,此時直線MN:,恒過定點又直線MN斜率不存在時,直線MN:也過,故直線MN過定點.【點睛】數(shù)形結(jié)合是數(shù)學解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學問題直觀化、生動化,能夠變抽象思維為形象思維,有助于把握數(shù)學問題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問題便迎刃而解,且解法簡捷。18、(1)(2)詳見解析.【解析】(1)由,求導,得到,寫出切線方程;(2)求導,再分,,討論求解.【小問1詳解】解:因為,所以,則,所以,所以曲線在點處的切線方程是,即;【小問2詳解】因為,所以,當時,成立,則在上遞減;當時,令,得,當時,,當時,,所以在上遞減,在上遞增;綜上:當時,在上遞減;當時,在上遞減,在上遞增;19、(1)(2)【解析】(1)利用到直線的距離求得半徑,由此求得圓的方程.(2)結(jié)合到直線的距離來求得四邊形面積的最小值.【小問1詳解】圓的半徑,圓的方程為.【小問2詳解】由四邊形的面積知,當時,面積最小.此時...20、(1);(2)證明見解析.【解析】(1)由題可得,,即求;(2)由題可設直線方程與雙曲線方程聯(lián)立,利用韋達定理法即證【小問1詳解】由題意可知在雙曲線C中,,,,解得所以雙曲線C的方程為;【小問2詳解】證法一:由題可知,設直線,,,由,得,則,,∴,,;當直線的斜率不存在時,,此時.綜上,為定值證法二:設直線PQ方程為,,,聯(lián)立得整理得,由過右焦點F的直線l與雙曲線C的右支交于P,Q兩點,則解得,,,,由雙曲線方程可得,,,,∵,∴,,證法三:設直線PQ方程為,,,聯(lián)立得整理得,由過右焦點F的直線l與雙曲線C的右支交于P,Q兩點,則解得,∴,,由雙曲線方程可得,,則,所以,,,∴為定值21、(1);(2).【解析】(1)求出圓心和半徑即可得到答案;(2)根據(jù)題意先求出切線的斜率,進而通過點斜式求出切線方程.【小問1詳解】由題意,圓心,半徑,則圓C的方程為:.【小問2詳解】由題意,,則切線斜率為-1,所以切線方程為:.22、(1)橢圓的方程為,點的軌跡的方程為(2)【解析】(1)由題意可得,求出,再結(jié)合,求出,從而可得橢圓的方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學五年級小數(shù)乘除法計算題匯編
- 科創(chuàng)板開通知識測試參考答案
- 語文試卷 天津市濱海新區(qū)五所重點中學高三畢業(yè)班聯(lián)考語文試卷
- 保險行業(yè)助理的工作總結(jié)和技能要求
- 骨骼疾病護理工作總結(jié)
- 家具家居行業(yè)技術嘗試改造
- 生物醫(yī)藥行業(yè)技術工作總結(jié)
- 紙制品行業(yè)業(yè)務員工作總結(jié)
- 游戲界面設計師的交互體驗和游戲設計
- 《機械防煙方式》課件
- DB11-T 693-2024 施工現(xiàn)場臨建房屋應用技術標準
- GB/T 45089-20240~3歲嬰幼兒居家照護服務規(guī)范
- 統(tǒng)編版2024-2025學年三年級上冊語文期末情景試卷(含答案)
- 股權原值證明-文書模板
- 中國近代史綱要中國計量大學現(xiàn)代科技學院練習題復習資料
- 2024-2025學年上學期重慶四年級英語期末培優(yōu)卷3
- 2024年01月11344金融風險管理期末試題答案
- 浙江省杭州市八縣區(qū)2024-2025學年高二數(shù)學上學期期末學業(yè)水平測試試題
- 紹興文理學院元培學院《操作系統(tǒng)》2022-2023學年第一學期期末試卷
- 湖南省長沙市明德教育集團初中聯(lián)盟2020-2021學年八年級上學期期末考試地理試題
- 藝考培訓合作合同協(xié)議書2024年
評論
0/150
提交評論