2025屆云南省文山州廣南二中高三數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
2025屆云南省文山州廣南二中高三數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
2025屆云南省文山州廣南二中高三數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
2025屆云南省文山州廣南二中高三數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
2025屆云南省文山州廣南二中高三數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆云南省文山州廣南二中高三數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),,若,對任意恒有,在區(qū)間上有且只有一個使,則的最大值為()A. B. C. D.2.如圖,在正四棱柱中,,分別為的中點(diǎn),異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且3.已知是函數(shù)的極大值點(diǎn),則的取值范圍是A. B.C. D.4.在四邊形中,,,,,,點(diǎn)在線段的延長線上,且,點(diǎn)在邊所在直線上,則的最大值為()A. B. C. D.5.中國古代數(shù)學(xué)著作《孫子算經(jīng)》中有這樣一道算術(shù)題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問物幾何?”人們把此類題目稱為“中國剩余定理”,若正整數(shù)除以正整數(shù)后的余數(shù)為,則記為,例如.現(xiàn)將該問題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的等于().A. B. C. D.6.若函數(shù)在時取得極值,則()A. B. C. D.7.已知,,,若,則()A. B. C. D.8.展開式中x2的系數(shù)為()A.-1280 B.4864 C.-4864 D.12809.已知,則()A. B. C. D.10.已知偶函數(shù)在區(qū)間內(nèi)單調(diào)遞減,,,,則,,滿足()A. B. C. D.11.一個正三角形的三個頂點(diǎn)都在雙曲線的右支上,且其中一個頂點(diǎn)在雙曲線的右頂點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.12.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中常數(shù)項是___________.14.如圖,在體積為V的圓柱中,以線段上的點(diǎn)O為項點(diǎn),上下底面為底面的兩個圓錐的體積分別為,,則的值是______.15.已知非零向量的夾角為,且,則______.16.某次足球比賽中,,,,四支球隊進(jìn)入了半決賽.半決賽中,對陣,對陣,獲勝的兩隊進(jìn)入決賽爭奪冠軍,失利的兩隊爭奪季軍.已知他們之間相互獲勝的概率如下表所示.獲勝概率—0.40.30.8獲勝概率0.6—0.70.5獲勝概率0.70.3—0.3獲勝概率0.20.50.7—則隊獲得冠軍的概率為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中底面是菱形,,是邊長為的正三角形,,為線段的中點(diǎn).求證:平面平面;是否存在滿足的點(diǎn),使得?若存在,求出的值;若不存在,請說明理由.18.(12分)如圖,四棱錐V﹣ABCD中,底面ABCD是菱形,對角線AC與BD交于點(diǎn)O,VO⊥平面ABCD,E是棱VC的中點(diǎn).(1)求證:VA∥平面BDE;(2)求證:平面VAC⊥平面BDE.19.(12分)在①,②,③這三個條件中任選一個,補(bǔ)充在下面問題中.若問題中的正整數(shù)存在,求的值;若不存在,說明理由.設(shè)正數(shù)等比數(shù)列的前項和為,是等差數(shù)列,__________,,,,是否存在正整數(shù),使得成立?20.(12分)已知函數(shù),它的導(dǎo)函數(shù)為.(1)當(dāng)時,求的零點(diǎn);(2)當(dāng)時,證明:.21.(12分)已知a>0,證明:1.22.(10分)如圖,在三棱柱中,已知四邊形為矩形,,,,的角平分線交于.(1)求證:平面平面;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù)的零點(diǎn)和最值點(diǎn)列方程組,求得的表達(dá)式(用表示),根據(jù)在上有且只有一個最大值,求得的取值范圍,求得對應(yīng)的取值范圍,由為整數(shù)對的取值進(jìn)行驗證,由此求得的最大值.【詳解】由題意知,則其中,.又在上有且只有一個最大值,所以,得,即,所以,又,因此.①當(dāng)時,,此時取可使成立,當(dāng)時,,所以當(dāng)或時,都成立,舍去;②當(dāng)時,,此時取可使成立,當(dāng)時,,所以當(dāng)或時,都成立,舍去;③當(dāng)時,,此時取可使成立,當(dāng)時,,所以當(dāng)時,成立;綜上所得的最大值為.故選:C【點(diǎn)睛】本小題主要考查三角函數(shù)的零點(diǎn)和最值,考查三角函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.2、B【解析】

連接,,,,由正四棱柱的特征可知,再由平面的基本性質(zhì)可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設(shè),則,則,,,由余弦定理,得.故選:B【點(diǎn)睛】本題主要考查異面直線的定義及所成的角和平面的基本性質(zhì),還考查了推理論證和運(yùn)算求解的能力,屬于中檔題.3、B【解析】

方法一:令,則,,當(dāng),時,,單調(diào)遞減,∴時,,,且,∴,即在上單調(diào)遞增,時,,,且,∴,即在上單調(diào)遞減,∴是函數(shù)的極大值點(diǎn),∴滿足題意;當(dāng)時,存在使得,即,又在上單調(diào)遞減,∴時,,所以,這與是函數(shù)的極大值點(diǎn)矛盾.綜上,.故選B.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點(diǎn),須在的左側(cè)附近,,即;在的右側(cè)附近,,即.易知,時,與相切于原點(diǎn),所以根據(jù)與的圖象關(guān)系,可得,故選B.4、A【解析】

依題意,如圖以為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,表示出點(diǎn)的坐標(biāo),根據(jù)求出的坐標(biāo),求出邊所在直線的方程,設(shè),利用坐標(biāo)表示,根據(jù)二次函數(shù)的性質(zhì)求出最大值.【詳解】解:依題意,如圖以為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,由,,,,,,,因為點(diǎn)在線段的延長線上,設(shè),解得,所在直線的方程為因為點(diǎn)在邊所在直線上,故設(shè)當(dāng)時故選:【點(diǎn)睛】本題考查向量的數(shù)量積,關(guān)鍵是建立平面直角坐標(biāo)系,屬于中檔題.5、C【解析】從21開始,輸出的數(shù)是除以3余2,除以5余3,滿足條件的是23,故選C.6、D【解析】

對函數(shù)求導(dǎo),根據(jù)函數(shù)在時取得極值,得到,即可求出結(jié)果.【詳解】因為,所以,又函數(shù)在時取得極值,所以,解得.故選D【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,根據(jù)函數(shù)的極值求參數(shù)的問題,屬于常考題型.7、B【解析】

由平行求出參數(shù),再由數(shù)量積的坐標(biāo)運(yùn)算計算.【詳解】由,得,則,,,所以.故選:B.【點(diǎn)睛】本題考查向量平行的坐標(biāo)表示,考查數(shù)量積的坐標(biāo)運(yùn)算,掌握向量數(shù)量積的坐標(biāo)運(yùn)算是解題關(guān)鍵.8、A【解析】

根據(jù)二項式展開式的公式得到具體為:化簡求值即可.【詳解】根據(jù)二項式的展開式得到可以第一個括號里出項,第二個括號里出項,或者第一個括號里出,第二個括號里出,具體為:化簡得到-1280x2故得到答案為:A.【點(diǎn)睛】求二項展開式有關(guān)問題的常見類型及解題策略:(1)求展開式中的特定項.可依據(jù)條件寫出第項,再由特定項的特點(diǎn)求出值即可.(2)已知展開式的某項,求特定項的系數(shù).可由某項得出參數(shù)項,再由通項寫出第項,由特定項得出值,最后求出其參數(shù).9、D【解析】

根據(jù)指數(shù)函數(shù)的單調(diào)性,即當(dāng)?shù)讛?shù)大于1時單調(diào)遞增,當(dāng)?shù)讛?shù)大于零小于1時單調(diào)遞減,對選項逐一驗證即可得到正確答案.【詳解】因為,所以,所以是減函數(shù),又因為,所以,,所以,,所以A,B兩項均錯;又,所以,所以C錯;對于D,,所以,故選D.【點(diǎn)睛】這個題目考查的是應(yīng)用不等式的性質(zhì)和指對函數(shù)的單調(diào)性比較大小,兩個式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質(zhì)得到大小關(guān)系,有時可以代入一些特殊的數(shù)據(jù)得到具體值,進(jìn)而得到大小關(guān)系.10、D【解析】

首先由函數(shù)為偶函數(shù),可得函數(shù)在內(nèi)單調(diào)遞增,再由,即可判定大小【詳解】因為偶函數(shù)在減,所以在上增,,,,∴.故選:D【點(diǎn)睛】本題考查函數(shù)的奇偶性和單調(diào)性,不同類型的數(shù)比較大小,應(yīng)找一個中間數(shù),通過它實(shí)現(xiàn)大小關(guān)系的傳遞,屬于中檔題.11、D【解析】

因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點(diǎn)坐標(biāo)為,,將其代入雙曲線可解得.【詳解】因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點(diǎn)坐標(biāo)為,,將其代入雙曲線方程得:,即,由得.故選:.【點(diǎn)睛】本題考查了雙曲線的性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平.12、A【解析】

由余弦定理求出角,再由三角形面積公式計算即可.【詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【點(diǎn)睛】本題主要考查了余弦定理的應(yīng)用,三角形的面積公式,考查了學(xué)生的運(yùn)算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13、-160【解析】試題分析:常數(shù)項為.考點(diǎn):二項展開式系數(shù)問題.14、【解析】

根據(jù)圓柱的體積為,以及圓錐的體積公式,計算即得.【詳解】由題得,,得.故答案為:【點(diǎn)睛】本題主要考查圓錐體的體積,是基礎(chǔ)題.15、1【解析】

由已知條件得出,可得,解之可得答案.【詳解】向量的夾角為,且,,可得:,

可得,

解得,

故答案為:1.【點(diǎn)睛】本題考查根據(jù)向量的數(shù)量積運(yùn)算求向量的模,關(guān)鍵在于將所求的向量的模平方,利用向量的數(shù)量積化簡求解即可,屬于基礎(chǔ)題.16、0.18【解析】

根據(jù)表中信息,可得勝C的概率;分類討論B或D進(jìn)入決賽,再計算A勝B或A勝C的概率即可求解.【詳解】由表中信息可知,勝C的概率為;若B進(jìn)入決賽,B勝D的概率為,則A勝B的概率為;若D進(jìn)入決賽,D勝B的概率為,則A勝D的概率為;由相應(yīng)的概率公式知,則A獲得冠軍的概率為.故答案為:0.18【點(diǎn)睛】本題考查了獨(dú)立事件的概率應(yīng)用,互斥事件的概率求法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、證明見解析;2.【解析】

利用面面垂直的判定定理證明即可;由,知,所以可得出,因此,的充要條件是,繼而得出的值.【詳解】解:證明:因為是正三角形,為線段的中點(diǎn),所以.因為是菱形,所以.因為,所以是正三角形,所以,而,所以平面.又,所以平面.因為平面,所以平面平面.由,知.所以,,.因此,的充要條件是,所以,.即存在滿足的點(diǎn),使得,此時.【點(diǎn)睛】本題主要考查平面與平面垂直的判定、三棱錐的體積等基礎(chǔ)知識;考查空間想象能力、運(yùn)算求解能力、推理論證能力和創(chuàng)新意識;考查化歸與轉(zhuǎn)化、函數(shù)與方程等數(shù)學(xué)思想,屬于難題.18、(1)見解析(2)見解析【解析】

(1)連結(jié)OE,證明VA∥OE得到答案.(2)證明VO⊥BD,BD⊥AC,得到BD⊥平面VAC,得到證明.【詳解】(1)連結(jié)OE.因為底面ABCD是菱形,所以O(shè)為AC的中點(diǎn),又因為E是棱VC的中點(diǎn),所以VA∥OE,又因為OE?平面BDE,VA?平面BDE,所以VA∥平面BDE;(2)因為VO⊥平面ABCD,又BD?平面ABCD,所以VO⊥BD,因為底面ABCD是菱形,所以BD⊥AC,又VO∩AC=O,VO,AC?平面VAC,所以BD⊥平面VAC.又因為BD?平面BDE,所以平面VAC⊥平面BDE.【點(diǎn)睛】本題考查了線面平行,面面垂直,意在考查學(xué)生的推斷能力和空間想象能力.19、見解析【解析】

根據(jù)等差數(shù)列性質(zhì)及、,可求得等差數(shù)列的通項公式,由即可求得的值;根據(jù)等式,變形可得,分別討論?、佗冖壑械囊粋€,結(jié)合等比數(shù)列通項公式代入化簡,檢驗是否存在正整數(shù)的值即可.【詳解】∵在等差數(shù)列中,,∴,∴公差,∴,∴,若存在正整數(shù),使得成立,即成立,設(shè)正數(shù)等比數(shù)列的公比為的公比為,若選①,∵,∴,∴,∴,∴當(dāng)時,滿足成立.若選②,∵,∴,∴,∴,∴方程無正整數(shù)解,∴不存在正整數(shù)使得成立.若選③,∵,∴,∴,∴,∴解得或(舍去),∴,∴當(dāng)時,滿足成立.【點(diǎn)睛】本題考查了等差數(shù)列通項公式的求法,等比數(shù)列通項公式及前n項和公式的應(yīng)用,遞推公式的簡單應(yīng)用,補(bǔ)充條件后求參數(shù)的值,屬于中檔題.20、(1)見解析;(2)證明見解析.【解析】

當(dāng)時,求函數(shù)的導(dǎo)數(shù),判斷導(dǎo)函數(shù)的單調(diào)性,計算即為導(dǎo)函數(shù)的零點(diǎn);

當(dāng)時,分類討論x的范圍,可令新函數(shù),計算新函數(shù)的最值可證明.【詳解】(1)的定義域為當(dāng)時,,,易知為上的增函數(shù),又,所以是的唯一零點(diǎn);(2)證明:當(dāng)時,,①若,則,所以成立,②若,設(shè),則,令,則,因為,所以,從而在上單調(diào)遞增,所以,即,在上單調(diào)遞增;所以,即,故.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,單調(diào)性,零點(diǎn)的求法.注意分類討論和構(gòu)造新函數(shù)求函數(shù)的最值的應(yīng)用.21、證明見解析【解析】

利用分析法,證明a即可.【詳解】證明:∵a>0,∴a1,∴a1≥0,∴要證明1,只要證明a1(a)1﹣4(a)+4,只要證明:a,∵a1,∴原不等式成立.【點(diǎn)睛】本題考查不等式的證明,著重考查分析法的運(yùn)用,考查推理論證能力,屬于中檔題.22、(1)見解析;(2)【解析】

(1)過點(diǎn)作交于,連接,設(shè),連接,由角平分線的性質(zhì),正方形的性質(zhì),三角形的全等,證得,,由線面垂直的判斷定理證得平面,再由面面垂直的判斷得證.(2)平面幾何知識和線面的關(guān)系可證得平面,建立空間直角坐標(biāo)系,求得兩

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論