2025屆河南省輝縣市第一中學高一上數(shù)學期末預測試題含解析_第1頁
2025屆河南省輝縣市第一中學高一上數(shù)學期末預測試題含解析_第2頁
2025屆河南省輝縣市第一中學高一上數(shù)學期末預測試題含解析_第3頁
2025屆河南省輝縣市第一中學高一上數(shù)學期末預測試題含解析_第4頁
2025屆河南省輝縣市第一中學高一上數(shù)學期末預測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆河南省輝縣市第一中學高一上數(shù)學期末預測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè),則a,b,c的大小關(guān)系是()A. B.C. D.2.某服裝廠2020年生產(chǎn)了15萬件服裝,若該服裝廠的產(chǎn)量每年以20%的增長率遞增,則該服裝廠的產(chǎn)量首次超過40萬件的年份是(參考數(shù)據(jù):取,)()A.2025屆 B.2025屆C.2025年 D.2026年3.一個三棱錐的正視圖和俯視圖如圖所示,則該三棱錐的側(cè)視圖可能為A. B.C. D.4.設(shè),其中、是正實數(shù),且,,則與的大小關(guān)系是()A. B.C. D.5.函數(shù)(且)與函數(shù)在同一個坐標系內(nèi)的圖象可能是A. B.C. D.6.若,是第二象限的角,則的值等于()A. B.7C. D.-77.設(shè)θ為銳角,,則cosθ=()A. B.C. D.8.已知集合,且,則的值可能為()A B.C.0 D.19.《易經(jīng)》是我國古代預測未來的著作,其中同時拋擲三枚古錢幣觀察正反面進行預測未知,則拋擲一次時出現(xiàn)兩枚正面一枚反面的概率為A. B.C. D.10.如圖,一根絕對剛性且長度不變、質(zhì)量可忽略不計線,一端固定,另一端懸掛一個沙漏讓沙漏在偏離平衡位置一定角度后在重力作用下在鉛垂面內(nèi)做周期擺動.設(shè)線長為,沙漏擺動時離開平衡位置的位移(單位:cm)與時間(單位:s)的函數(shù)關(guān)系是,.若,要使沙漏擺動的最小正周期是,則線長約為()A.5m B.C. D.20m二、填空題:本大題共6小題,每小題5分,共30分。11.某學校在校學生有2000人,為了增強學生的體質(zhì),學校舉行了跑步和登山比賽,每人都參加且只參加其中一項比賽,高一、高二、高三年級參加跑步的人數(shù)分別為a,b,c,且,全校參加登山的人數(shù)占總?cè)藬?shù)的.為了了解學生對本次比賽的滿意程度,按分層抽樣的方法從中抽取一個容量為200的樣本進行調(diào)查,則應(yīng)從高三年級參加跑步的學生中抽取人數(shù)為______.12.如圖是某個鐵質(zhì)幾何體的三視圖,其中每個小正方形格子的邊長均為個長度單位,將該鐵質(zhì)幾何體熔化,制成一個大鐵球,如果在熔制過程中材料沒有損耗,則大鐵球的表面積為_______________________.13.已知函數(shù)是定義在上且以3為周期的奇函數(shù),當時,,則時,__________,函數(shù)在區(qū)間上的零點個數(shù)為__________14.已知函數(shù)①當a=1時,函數(shù)的值域是___________;②若函數(shù)的圖像與直線y=1只有一個公共點,則實數(shù)a的取值范圍是___________15.在中,,BC邊上的高等于,則______________16.無論實數(shù)k取何值,直線kx-y+2+2k=0恒過定點__三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知定義域為的函數(shù)是奇函數(shù).(1)求的值;(2)用函數(shù)單調(diào)性的定義證明在上是減函數(shù).18.已知集合為非空數(shù)集,定義,.(1)若集合,直接寫出集合及;(2)若集合,,且,求證;(3)若集,且,求集合中元素的個數(shù)的最大值.19.已知函數(shù)是定義在上的奇函數(shù),且.(1)確定函數(shù)的解析式,判斷并證明函數(shù)在上的單調(diào)性;(2)若存在實數(shù),使得不等式成立,求正實數(shù)的取值范圍.20.在平面直角坐標系中,已知,,動點滿足.(1)若,求面積的最大值;(2)已知,是否存在點C,使得,若存在,求點C的個數(shù);若不存在,說明理由.21.某水果經(jīng)銷商決定在八月份(30天計算)銷售一種時令水果.在這30天內(nèi),日銷售量h(斤)與時間t(天)滿足一次函數(shù)h=t+2,每斤水果的日銷售價格l(元)與時間t(天)滿足如圖所示的對應(yīng)關(guān)系.(Ⅰ)根據(jù)提供的圖象,求出每斤水果的日銷售價格l(元)與時間t(天)所滿足的函數(shù)關(guān)系式;(Ⅱ)設(shè)y(元)表示銷售水果的日收入(日收入=日銷售量×日銷售價格),寫出y與t的函數(shù)關(guān)系式,并求這30天中第幾天日收入最大,最大值為多少元?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】比較a、b、c與0和1的大小即可判斷它們之間的大小.【詳解】,,,故故選:C.2、D【解析】設(shè)該服裝廠的產(chǎn)量首次超過40萬件的年份為n,進而得,再結(jié)合對數(shù)運算解不等式即可得答案.【詳解】解:設(shè)該服裝廠的產(chǎn)量首次超過40萬件的年份為n,則,得,因為,所以故選:D3、D【解析】由幾何體的正視圖和俯視圖可知,三棱錐的頂點在底面內(nèi)的射影在底面棱上,則原幾何體如圖所示,從而側(cè)視圖為D.故選D4、B【解析】利用基本不等式結(jié)合二次函數(shù)的基本性質(zhì)可得出與的大小關(guān)系.【詳解】因為、是正實數(shù),且,則,,因此,.故選:B.5、C【解析】利用指數(shù)函數(shù)和二次函數(shù)的性質(zhì)對各個選項一一進行判斷可得答案.【詳解】解:兩個函數(shù)分別為指數(shù)函數(shù)和二次函數(shù),其中二次函數(shù)的圖象過點,故排除A,D;二次函數(shù)的對稱軸為直線,當時,指數(shù)函數(shù)遞減,,C符合題意;當時,指數(shù)函數(shù)遞增,,B不合題意,故選C【點睛】本題通過對多個圖象的選擇考查指數(shù)函數(shù)、二次函數(shù)的圖象與性質(zhì),屬于中檔題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點以及時函數(shù)圖象的變化趨勢,利用排除法,將不合題意選項一一排除.6、B【解析】先由同角三角函數(shù)關(guān)系式求出,再利用兩角差的正切公式即可求解.【詳解】因為,是第二象限的角,所以,所以.所以.故選:B7、D【解析】為銳角,故選8、C【解析】化簡集合得范圍,結(jié)合判斷四個選項即可.【詳解】集合,四個選項中,只有,故選:C【點睛】本題考查元素與集合的關(guān)系,屬于基礎(chǔ)題9、C【解析】用列舉法得出:拋擲三枚古錢幣出現(xiàn)的基本事件的總數(shù),進而可得出所求概率.【詳解】拋擲三枚古錢幣出現(xiàn)的基本事件共有:正正正,正正反,正反正,反正正,正反反,反正反,反反正,反反反8中,其中出現(xiàn)兩正一反的共有3種,故概率為.故選C【點睛】本題主要考查古典概型,熟記概率的計算公式即可,屬于??碱}型.10、A【解析】根據(jù)余弦函數(shù)的周期公式計算,即可求得答案.【詳解】因為函數(shù)最小正周期是,故,即,解得(m),故選:A二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由題意求得樣本中抽取的高三的人數(shù)為人進而求得樣本中高三年級參加登山的人,即可求解.【詳解】由題意,高一、高二、高三年級參加跑步的人數(shù)分別為a,b,c,且,所以樣本中抽取的高三的人數(shù)為人,又因為全校參加登山的人數(shù)占總?cè)藬?shù)的,所以樣本中高三年級參加登山的人數(shù)為,所以樣本中高三年級參加跑步的人數(shù)為人.故答案為:.12、【解析】由已知得該鐵質(zhì)幾何體是由一個小鐵球和一個鐵質(zhì)圓錐體拼接而成,根據(jù)圓錐和球體的體積公式可得答案.【詳解】該鐵質(zhì)幾何體是由一個小鐵球和一個鐵質(zhì)圓錐體拼接而成,體積之和為,設(shè)制成的大鐵球半徑為,則,得,故大鐵球的表面積為.故答案為:.13、①.②.5【解析】(1)當時,,∴,又函數(shù)是奇函數(shù),∴故當時,(2)當時,令,得,即,解得,即,又函數(shù)為奇函數(shù),故可得,且∵函數(shù)是以3為周期的函數(shù),∴,,又,∴綜上可得函數(shù)在區(qū)間上的零點為,共5個答案:,514、①.(-∞,1]②.(-1,1]【解析】①分段求值域,再求并集可得的值域;②轉(zhuǎn)化為=在上與直線只有一個公共點,分離a求值域可得實數(shù)a的取值范圍【詳解】①當a=1時,即當x≤1時,,當x>1時,,綜上所述當a=1時,函數(shù)的值域是,②由無解,故=在上與直線只有一個公共點,則有一個零點,即實數(shù)的取值范圍是.故答案為:;.15、.【解析】設(shè)邊上的高為,則,求出,.再利用余弦定理求出.【詳解】設(shè)邊上的高為,則,所以,由余弦定理,知故答案為【點睛】本題主要考查余弦定理,意在考查學生對該知識的理解掌握水平,屬于基礎(chǔ)題.16、【解析】由kx-y+2+2k=0,得(x+2)k+(2-y)=0,由此能求出無論實數(shù)k取何值,直線kx-y+2+2k=0恒過定點【詳解】∵kx-y+2+2k=0,∴(x+2)k+(2-y)=0,解方程組,得∴無論實數(shù)k取何值,直線kx-y+2+2k=0恒過定點故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)詳見解析【解析】(1)既可以利用奇函數(shù)的定義求得的值,也可以利用在處有意義的奇函數(shù)的性質(zhì)求,但要注意證明該值使得函數(shù)是奇函數(shù).(2)按照函數(shù)單調(diào)性定義法證明步驟證明即可.【詳解】解:(1)解法一:因為函數(shù)是定義在上的奇函數(shù),所以,即,整理得,所以,所以.解法二:因為函數(shù)是定義在上的奇函數(shù),所以,即,解得.當時,.因為,所以當時,函數(shù)是定義域為的奇函數(shù).(2)由(1)得.對于任意的,且,則.因為,所以,則,而,所以,即.所以函數(shù)在上是減函數(shù).【點睛】已知函數(shù)奇偶性求參數(shù)值的方法有:(1)利用定義(偶函數(shù))或(奇函數(shù))求解.(2)利用性質(zhì):如果為奇函數(shù),且在處有意義,則有;(3)結(jié)合定義利用特殊值法,求出參數(shù)值.定義法證明單調(diào)性:(1)取值;(2)作差(作商);(3)變形;(4)定號(與1比較);(5)下結(jié)論.18、(1),;(2)證明見解析;(3)1347.【解析】(1)根據(jù)題目定義,直接得到集合A+及A﹣;(2)根據(jù)兩集合相等即可找到x1,x2,x3,x4的關(guān)系;(3)通過假設(shè)A集合{m,m+1,m+2,…,4040},m≤2020,m∈N,求出相應(yīng)的A+及A﹣,通過A+∩A﹣=?建立不等關(guān)系求出相應(yīng)的值【詳解】(1)根據(jù)題意,由,則,;(2)由于集合,,且,所以中也只包含四個元素,即,剩下的,所以;(3)設(shè)滿足題意,其中,則,∴,,∴,∵,由容斥原理,中最小的元素為0,最大的元素為,∴,∴,∴,實際上當時滿足題意,證明如下:設(shè),則,,依題意有,即,故的最小值為674,于是當時,中元素最多,即時滿足題意,綜上所述,集合中元素的個數(shù)的最大值是1347.【點睛】關(guān)鍵點點睛:第三問集合中元素的個數(shù)最多時,應(yīng)滿足中的最大值小于中的最小值,另外容斥原理的應(yīng)用也是解題的關(guān)鍵.19、(1),函數(shù)在上單調(diào)遞減,證明見解析.(2)【解析】(1)根據(jù),得到函數(shù)解析式,設(shè),計算,證明函數(shù)的單調(diào)性.(2)根據(jù)函數(shù)的奇偶性和單調(diào)性得到,設(shè),求函數(shù)的最小值得到答案.【小問1詳解】函數(shù)是定義在上的奇函數(shù),則,,解得,,故.在上單調(diào)遞減,證明如下:設(shè),則,,,,故,即.故函數(shù)在上單調(diào)遞減.【小問2詳解】,即,,,故,即,設(shè),,,,故,又,故.20、(1)(2)存在2個點C符合要求【解析】(1)由,利用兩點間距離公式可得,整理得到,由,若面積最大,則到距離最大,即最大,求解即可;(2)由,利用兩點間距離公式可得,整理得到,則點為圓與圓的交點,進而由兩圓的位置關(guān)系即可得到符合條件的點的個數(shù)【詳解】解:(1)由,得,化簡,即,所以,當時,有最大值,此時點到距離最大為,因為,所以面積的最大值為(2)存在,由,得,化簡得,即.故點C在以為圓心,半徑為2的圓上,結(jié)合(1)中知,點C還在以為圓心,半徑為的圓上,由于,,,且,所以圓M、圓N相交,有2個公共點,故存在2個點C符合要求.【點睛】本題考查兩點間距離公式的應(yīng)用,考查圓與圓的位置關(guān)系的應(yīng)用,考查運算能力21、(I);(II)見解析.【解析】(Ⅰ)利用已知條件列出時間段上的函數(shù)的解析式即可.(Ⅱ)利用分段函數(shù)的解析式求解函數(shù)的最值即可【詳解】解:(Ⅰ)當0<t≤10,l=30,當10<t≤30時,設(shè)函數(shù)關(guān)系式為l(t)=kt+b,則,解得k=-1,b=40,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論