1.4.2 用空間向量研究距離、夾角問(wèn)題(分層練習(xí))- 高二數(shù)學(xué)新教材配套練習(xí)(人教A版選擇性必修第一冊(cè))_第1頁(yè)
1.4.2 用空間向量研究距離、夾角問(wèn)題(分層練習(xí))- 高二數(shù)學(xué)新教材配套練習(xí)(人教A版選擇性必修第一冊(cè))_第2頁(yè)
1.4.2 用空間向量研究距離、夾角問(wèn)題(分層練習(xí))- 高二數(shù)學(xué)新教材配套練習(xí)(人教A版選擇性必修第一冊(cè))_第3頁(yè)
1.4.2 用空間向量研究距離、夾角問(wèn)題(分層練習(xí))- 高二數(shù)學(xué)新教材配套練習(xí)(人教A版選擇性必修第一冊(cè))_第4頁(yè)
1.4.2 用空間向量研究距離、夾角問(wèn)題(分層練習(xí))- 高二數(shù)學(xué)新教材配套練習(xí)(人教A版選擇性必修第一冊(cè))_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1.4.2用空間向量研究距離、夾角問(wèn)題基礎(chǔ)練鞏固新知夯實(shí)基礎(chǔ)1.已知向量a=(1,0,-1),則下列向量中與a成60°夾角的是()A.(-1,1,0) B.(1,-1,0)C.(0,-1,1) D.(-1,0,1)2.已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E為AA1的中點(diǎn),則異面直線BE與CD1所成角的余弦值為()A.eq\f(\r(10),10) B.eq\f(1,5) C.eq\f(3\r(10),10) D.eq\f(3,5)3.在正方體ABCD-A1B1C1D1中,點(diǎn)E為BB1的中點(diǎn),則平面A1ED與平面ABCD所成的銳二面角的余弦值為 ()A.eq\f(1,2) B.eq\f(2,3) C.eq\f(\r(3),3) D.eq\f(\r(2),2)4.正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,點(diǎn)M在AC1上且eq\o(AM,\s\up8(→))=eq\f(1,2)eq\o(MC,\s\up8(→))1,N為B1B的中點(diǎn),則|eq\o(MN,\s\up8(→))|為()A.eq\f(\r(21),6)a B.eq\f(\r(6),6)a C.eq\f(\r(15),6)a D.eq\f(\r(15),3)a5.設(shè)正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,則點(diǎn)D1到平面A1BD的距離是()A.eq\f(\r(3),2) B.eq\f(\r(2),2) C.eq\f(2\r(2),3) D.eq\f(2\r(3),3)6.已知兩平面的法向量分別為m=(0,1,0),n=(0,1,1),則兩平面所成的二面角的大小為__________.7.在長(zhǎng)方體ABCD-A1B1C1D1中,AB=2,BC=AA1=1,則D1C1與平面A1BC1所成角的正弦值為__________.8.如圖所示,在多面體A1B1D1-DCBA,四邊形AA1B1B,ADD1A1,ABCD均為正方形,E為B1D1的中點(diǎn),過(guò)A1,D,E的平面交CD1于F.(1)證明:EF∥B1C.(2)求二面角E-A1D-B1的余弦值.能力練綜合應(yīng)用核心素養(yǎng)9.正△ABC與正△BCD所在平面垂直,則二面角A-BD-C的正弦值為()A.eq\f(\r(5),5) B.eq\f(\r(3),3)C.eq\f(2\r(5),5) D.eq\f(\r(6),3)10.在四面體P-ABC中,PA,PB,PC兩兩垂直,設(shè)PA=PB=PC=a,則點(diǎn)P到平面ABC的距離為()A.eq\f(\r(6),3) B.eq\f(\r(3),3)a C.eq\f(a,3) D.eq\r(6)a11.在正四棱錐S-ABCD中,O為頂點(diǎn)在底面上的射影,P為側(cè)棱SD的中點(diǎn),且SO=OD,則直線BC與平面PAC所成的角是()A.30° B.45°C.60° D.90°如圖所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,點(diǎn)E、F分別是棱AB、BB1的中點(diǎn),則直線EF和BC1所成的角是__________.13.在正四棱柱ABCD-A1B1C1D1中,AA1=2AB,則CD與平面BDC1所成角的正弦值等于__________.14.如圖所示,二面角的棱上有A,B兩點(diǎn),直線AC,BD分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都垂直于AB.已知AB=4,AC=6,BD=8,CD=2eq\r(17),則該二面角的大小為__________.15.如圖,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.(1)證明:AC⊥B1D;(2)求直線B1C1與平面ACD1所成角的正弦值.

【參考答案】1.B經(jīng)檢驗(yàn),選項(xiàng)B中向量(1,-1,0)與向量a=(1,0,-1)的夾角的余弦值為eq\f(1,2),即它們的夾角為60°.2.C解析以D為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,如圖,設(shè)AA1=2AB=2,則D(0,0,0),C(0,1,0),B(1,1,0),E(1,0,1),D1(0,0,2).所以eq\o(BE,\s\up6(→))=(0,-1,1),eq\o(CD1,\s\up6(→))=(0,-1,2),所以cos〈eq\o(BE,\s\up6(→)),eq\o(CD1,\s\up6(→))〉=eq\f(\o(BE,\s\up6(→))·\o(CD1,\s\up6(→)),|\o(BE,\s\up6(→))|·|\o(CD1,\s\up6(→))|)=eq\f(3,\r(2)×\r(5))=eq\f(3\r(10),10).3.B解析以A為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,設(shè)棱長(zhǎng)為1,則A1(0,0,1),Eeq\b\lc\(\rc\)(\a\vs4\al\co1(1,0,\f(1,2))),D(0,1,0),∴eq\o(A1D,\s\up8(→))=(0,1,-1),eq\o(A1E,\s\up8(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(1,0,-\f(1,2))),設(shè)平面A1ED的一個(gè)法向量為n1=(1,y,z),所以有eq\b\lc\{(\a\vs4\al\co1(\o(A1D,\s\up8(→))·n1=0,,\o(A1E,\s\up8(→))·n1=0,))即eq\b\lc\{(\a\vs4\al\co1(y-z=0,,1-\f(1,2)z=0,))解得eq\b\lc\{(\a\vs4\al\co1( y=2,,z=2.))∴n1=(1,2,2).∵平面ABCD的一個(gè)法向量為n2=(0,0,1),∴cos〈n1,n2〉=eq\f(2,3×1)=eq\f(2,3).即所成的銳二面角的余弦值為eq\f(2,3).4.A解析以D為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系D-xyz,則A(a,0,0),C1(0,a,a),Neq\b\lc\(\rc\)(\a\vs4\al\co1(a,a,\f(a,2))).設(shè)M(x,y,z),∵點(diǎn)M在AC1上且eq\o(AM,\s\up8(→))=eq\f(1,2)eq\o(MC,\s\up8(→))1,(x-a,y,z)=eq\f(1,2)(-x,a-y,a-z)∴x=eq\f(2,3)a,y=eq\f(a,3),z=eq\f(a,3).得Meq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2a,3),\f(a,3),\f(a,3))),∴|eq\o(MN,\s\up8(→))|=eq\r(\b\lc\(\rc\)(\a\vs4\al\co1(a-\f(2,3)a))\s\up12(2)+\b\lc\(\rc\)(\a\vs4\al\co1(a-\f(a,3)))\s\up12(2)+\b\lc\(\rc\)(\a\vs4\al\co1(\f(a,2)-\f(a,3)))\s\up12(2))=eq\f(\r(21),6)a.5.D解析如圖建立坐標(biāo)系.則D1(0,0,2),A1(2,0,2),B(2,2,0),eq\o(D1A1,\s\up6(→))=(2,0,0),eq\o(DB,\s\up6(→))=(2,2,0),設(shè)平面A1BD的法向量n=(x,y,z),則eq\b\lc\{(\a\vs4\al\co1(n·\o(DA1,\s\up6(→))=0,,n·\o(DB,\s\up6(→))=0,))∴eq\b\lc\{(\a\vs4\al\co1(2x+2z=0,,2x+2y=0,))令z=1,得n=(-1,1,1).∴D1到平面A1BD的距離d=eq\f(|\o(D1A1,\s\up6(→))·n|,|n|)=eq\f(2,\r(3))=eq\f(2\r(3),3).6.eq\f(π,4)或eq\f(3π,4)解析cos〈m,n〉=eq\f(m·n,|m||n|)=eq\f(\r(2),2),∴〈m,n〉=eq\f(π,4).∴兩平面所成二面角的大小為eq\f(π,4)或eq\f(3π,4).7.eq\f(1,3)解析以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,設(shè)n=(x,y,z)為平面A1BC1的法向量.則n·eq\o(A1B,\s\up6(→))=0,n·eq\o(A1C1,\s\up6(→))=0,即eq\b\lc\{(\a\vs4\al\co1(2y-z=0,,-x+2y=0,))令z=2,則y=1,x=2,于是n=(2,1,2),eq\o(D1C1,\s\up6(→))=(0,2,0)設(shè)所求線面角為α,則sinα=|cos〈n,eq\o(D1C1,\s\up6(→))〉|=eq\f(1,3).8.(1)證明由正方形的性質(zhì)可知A1B1∥AB∥DC,且A1B1=AB=DC,所以四邊形A1B1CD為平行四邊形,從而B1C∥A1D,又A1D?面A1DE,B1C?面A1DE,于是B1C∥面A1DE.又B1C?面B1CD1.面A1DE∩面B1CD1=EF,所以EF∥B1C.(2)解因?yàn)樗倪呅蜛A1B1B,ADD1A1,ABCD均為正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD.以A為原點(diǎn),分別以eq\o(AB,\s\up6(→)),eq\o(AD,\s\up6(→)),eq\o(AA1,\s\up6(→))為x軸,y軸和z軸單位正向量建立如圖所示的空間直角坐標(biāo)系,可得點(diǎn)的坐標(biāo)A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E點(diǎn)為B1D1的中點(diǎn),所以E點(diǎn)的坐標(biāo)為eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),\f(1,2),1)).設(shè)面A1DE的法向量n1=(r1,s1,t1),而該面上向量eq\o(A1E,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),\f(1,2),0)),eq\o(A1D,\s\up6(→))=(0,1,-1),由n1⊥eq\o(A1E,\s\up6(→)).n1⊥eq\o(A1D,\s\up6(→))得r1,s1,t1應(yīng)滿足的方程組eq\b\lc\{(\a\vs4\al\co1(\f(1,2)r1+\f(1,2)s1=0,,s1-t1=0,))(-1,1,1)為其一組解,所以可取n1=(-1,1,1).設(shè)面A1B1CD的法向量n2=(r2,s2,t2),而該面上向量eq\o(A1B1,\s\up6(→))=(1,0,0),eq\o(A1D,\s\up6(→))=(0,1,-1),由此同理可得n2=(0,1,1).所以結(jié)合圖形知二面角E-A1D-B1的余弦值為eq\f(|n1·n2|,|n1|·|n2|)=eq\f(2,\r(3)×\r(2))=eq\f(\r(6),3).9.C解析取BC中點(diǎn)O,連接AO,DO.建立如圖所示坐標(biāo)系,設(shè)BC=1,則Aeq\b\lc\(\rc\)(\a\vs4\al\co1(0,0,\f(\r(3),2))),Beq\b\lc\(\rc\)(\a\vs4\al\co1(0,-\f(1,2),0)),Deq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(3),2),0,0)).∴eq\o(OA,\s\up8(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(0,0,\f(\r(3),2))),eq\o(BA,\s\up8(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,2),\f(\r(3),2))),eq\o(BD,\s\up8(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(3),2),\f(1,2),0)).由于eq\o(OA,\s\up8(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(0,0,\f(\r(3),2)))為平面BCD的一個(gè)法向量,可進(jìn)一步求出平面ABD的一個(gè)法向量n=(1,-eq\r(3),1),∴cos〈n,eq\o(OA,\s\up8(→))〉=eq\f(\r(5),5),∴sin〈n,eq\o(OA,\s\up8(→))〉=eq\f(2\r(5),5).10.B解析根據(jù)題意,可建立如圖所示的空間直角坐標(biāo)系P-xyz,則P(0,0,,0),A(a,0,0),B(0,a,0),C(0,0,a).過(guò)點(diǎn)P作PH⊥平面ABC,交平面ABC于點(diǎn)H,則PH的長(zhǎng)即為點(diǎn)P到平面ABC的距離.∵PA=PB=PC,∴H為△ABC的外心.又∵△ABC為正三角形,∴H為△ABC的重心,可得H點(diǎn)的坐標(biāo)為eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a,3),\f(a,3),\f(a,3))).∴PH=eq\r(\b\lc\(\rc\)(\a\vs4\al\co1(\f(a,3)-0))\s\up12(2)+\b\lc\(\rc\)(\a\vs4\al\co1(\f(a,3)-0))\s\up12(2)+\b\lc\(\rc\)(\a\vs4\al\co1(\f(a,3)-0))\s\up12(2))=eq\f(\r(3),3)a.∴點(diǎn)P到平面ABC的距離為eq\f(\r(3),3)a.A解析如圖,以O(shè)為原點(diǎn)建立空間直角坐標(biāo)系O-xyz.設(shè)OD=SO=OA=OB=OC=a.則A(a,0,0),B(0,a,0),C(-a,0,0),Peq\b\lc\(\rc\)(\a\vs4\al\co1(0,-\f(a,2),\f(a,2))).則eq\o(CA,\s\up8(→))=(2a,0,0),eq\o(AP,\s\up8(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(-a,-\f(a,2),\f(a,2))),eq\o(CB,\s\up8(→))=(a,a,0),設(shè)平面PAC的一個(gè)法向量為n,設(shè)n=(x,y,z),則eq\b\lc\{(\a\vs4\al\co1(n·\o(CA,\s\up8(→))=0,,n·\o(AP,\s\up8(→))=0,))解得eq\b\lc\{(\a\vs4\al\co1(x=0,,y=z,))可取n=(0,1,1),則cos〈eq\o(CB,\s\up8(→)),n〉=eq\f(\o(CB,\s\up8(→))·n,|\o(CB,\s\up8(→))|·|n|)=eq\f(a,\r(2a2)·\r(2))=eq\f(1,2),∴〈eq\o(CB,\s\up8(→)),n〉=60°,∴直線BC與平面PAC所成的角為90°-60°=30°.12.60°解析以BC為x軸,BA為y軸,BB1為z軸,建立空間直角坐標(biāo)系.設(shè)AB=BC=AA1=2,則C1(2,0,2),E(0,1,0),F(xiàn)(0,0,1),則eq\o(EF,\s\up8(→))=(0,-1,1),eq\o(BC1,\s\up8(→))=(2,0,2),∴eq\o(EF,\s\up8(→))·eq\o(BC1,\s\up8(→))=2,∴cos〈eq\o(EF,\s\up8(→)),eq\o(BC1,\s\up8(→))〉=eq\f(2,\r(2)×2\r(2))=eq\f(1,2),∴EF和BC1所成的角為60°.13.eq\f(2,3)解析以D為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,如圖,設(shè)AA1=2AB=2,則D(0,0,0),C(0,1,0),B(1,1,0),C1(0,1,2),則eq\o(DC,\s\up8(→))=(0,1,0),eq\o(DB,\s\up8(→))=(1,1,0),eq\o(DC1,\s\up8(→))=(0,1,2).設(shè)平面BDC1的法向量為n=(x,y,z),則n⊥eq\o(DB,\s\up8(→)),n⊥eq\o(DC1,\s\up8(→)),所以有eq\b\lc\{(\a\vs4\al\co1(x+y=0,,y+2z=0,))令y=-2,得平面BDC1的一個(gè)法向量為n=(2,-2,1).設(shè)CD與平面BDC1所成的角為θ,則sinθ=|cos〈n,eq\o(DC,\s\up8(→))〉|=eq\b\lc\|\rc\|(\a\vs4\al\co1(\f(n·\o(DC,\s\up8(→)),|n||\o(DC,\s\up8(→))|)))=eq\f(2,3).14.60°解析∵eq\o(CD,\s\up6(→))=eq\o(CA,\s\up6(→))+eq\o(AB,\s\up6(→))+eq\o(BD,\s\up6(→)),∴|eq\o(CD,\s\up6(→))|=eq\r((\o(CA,\s\up6(→))+\o(AB,\s\up6(→))+\o(BD,\s\up6(→)))2)=eq\r(36+16+64+2\o(CA,\s\up6(→))·\o(BD,\s\up6(→)))=eq\r(116+2\o(CA,\s\up6(→))·\o(BD,\s\up6(→)))=eq\r(17).∴eq\o(CA,\s\up6(→))·eq\o(BD,\s\up6(→))=|eq\o(CA,\s\up6(→))|·|eq\o(BD,\s\up6(→))|·cos〈eq\o(CA,\s\up6(→)),eq\o(BD,\s\up6(→))〉=-24.∴cos〈eq\o(CA,\s\up6(→)),eq\o(BD,\s\up6(→))〉=-eq\f(1,2).又所求二面角與〈eq\o(CA,\s\up6(→)),eq\o(BD,\s\up6(→))〉互補(bǔ),∴所求的二面角為60°.15.(1)證明易知,AB,AD,AA1兩兩垂直.如圖,以A為坐標(biāo)原點(diǎn),AB,AD,AA1所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系.設(shè)AB=t,則相關(guān)各點(diǎn)的坐標(biāo)為A(0,0,0),B(t,0,0),B1(t,0,3),C(t,1,0),C

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論