四川省廣安、眉山、內(nèi)江、遂寧2025屆數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第1頁(yè)
四川省廣安、眉山、內(nèi)江、遂寧2025屆數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第2頁(yè)
四川省廣安、眉山、內(nèi)江、遂寧2025屆數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第3頁(yè)
四川省廣安、眉山、內(nèi)江、遂寧2025屆數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第4頁(yè)
四川省廣安、眉山、內(nèi)江、遂寧2025屆數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

四川省廣安、眉山、內(nèi)江、遂寧2025屆數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,若,則等于()A.3 B.4 C.5 D.62.已知函數(shù)是上的偶函數(shù),是的奇函數(shù),且,則的值為()A. B. C. D.3.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,24.直線與圓的位置關(guān)系是()A.相交 B.相切 C.相離 D.相交或相切5.若復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限,則實(shí)數(shù)的取值范圍是()A. B. C. D.6.執(zhí)行如圖的程序框圖,若輸出的結(jié)果,則輸入的值為()A. B.C.3或 D.或7.在中,已知,,,為線段上的一點(diǎn),且,則的最小值為()A. B. C. D.8.若函數(shù)的圖象過(guò)點(diǎn),則它的一條對(duì)稱軸方程可能是()A. B. C. D.9.函數(shù)與的圖象上存在關(guān)于直線對(duì)稱的點(diǎn),則的取值范圍是()A. B. C. D.10.若雙曲線:繞其對(duì)稱中心旋轉(zhuǎn)后可得某一函數(shù)的圖象,則的離心率等于()A. B. C.2或 D.2或11.已知f(x)=是定義在R上的奇函數(shù),則不等式f(x-3)<f(9-x2)的解集為()A.(-2,6) B.(-6,2) C.(-4,3) D.(-3,4)12.已知實(shí)數(shù)x,y滿足,則的最小值等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某班星期一共八節(jié)課(上午、下午各四節(jié),其中下午最后兩節(jié)為社團(tuán)活動(dòng)),排課要求為:語(yǔ)文、數(shù)學(xué)、外語(yǔ)、物理、化學(xué)各排一節(jié),從生物、歷史、地理、政治四科中選排一節(jié).若數(shù)學(xué)必須安排在上午且與外語(yǔ)不相鄰(上午第四節(jié)和下午第一節(jié)不算相鄰),則不同的排法有__________種.14.某市公租房源位于、、三個(gè)小區(qū),每位申請(qǐng)人只能申請(qǐng)其中一個(gè)小區(qū)的房子,申請(qǐng)其中任意一個(gè)小區(qū)的房子是等可能的,則該市的任意位申請(qǐng)人中,恰好有人申請(qǐng)小區(qū)房源的概率是______.(用數(shù)字作答)15.已知集合,,則________.16.已知雙曲線()的左右焦點(diǎn)分別為,為坐標(biāo)原點(diǎn),點(diǎn)為雙曲線右支上一點(diǎn),若,,則雙曲線的離心率的取值范圍為_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)(1)證明:當(dāng)時(shí),;(2)當(dāng)時(shí),求整數(shù)的最大值.(參考數(shù)據(jù):,)18.(12分)4月23日是“世界讀書日”,某中學(xué)開展了一系列的讀書教育活動(dòng).學(xué)校為了解高三學(xué)生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個(gè)讀書小組(每名學(xué)生只能參加一個(gè)讀書小組)學(xué)生抽取12名學(xué)生參加問卷調(diào)查.各組人數(shù)統(tǒng)計(jì)如下:小組甲乙丙丁人數(shù)12969(1)從參加問卷調(diào)查的12名學(xué)生中隨機(jī)抽取2人,求這2人來(lái)自同一個(gè)小組的概率;(2)從已抽取的甲、丙兩個(gè)小組的學(xué)生中隨機(jī)抽取2人,用表示抽得甲組學(xué)生的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.19.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程與曲線的直角坐標(biāo)方程;(2)若射線與和分別交于點(diǎn),求.20.(12分)已知數(shù)列滿足:對(duì)任意,都有.(1)若,求的值;(2)若是等比數(shù)列,求的通項(xiàng)公式;(3)設(shè),,求證:若成等差數(shù)列,則也成等差數(shù)列.21.(12分)如圖,正方形是某城市的一個(gè)區(qū)域的示意圖,陰影部分為街道,各相鄰的兩紅綠燈之間的距離相等,處為紅綠燈路口,紅綠燈統(tǒng)一設(shè)置如下:先直行綠燈30秒,再左轉(zhuǎn)綠燈30秒,然后是紅燈1分鐘,右轉(zhuǎn)不受紅綠燈影響,這樣獨(dú)立的循環(huán)運(yùn)行.小明上學(xué)需沿街道從處騎行到處(不考慮處的紅綠燈),出發(fā)時(shí)的兩條路線()等可能選擇,且總是走最近路線.(1)請(qǐng)問小明上學(xué)的路線有多少種不同可能?(2)在保證通過(guò)紅綠燈路口用時(shí)最短的前提下,小明優(yōu)先直行,求小明騎行途中恰好經(jīng)過(guò)處,且全程不等紅綠燈的概率;(3)請(qǐng)你根據(jù)每條可能的路線中等紅綠燈的次數(shù)的均值,為小明設(shè)計(jì)一條最佳的上學(xué)路線,且應(yīng)盡量避開哪條路線?22.(10分)已知矩陣的一個(gè)特征值為4,求矩陣A的逆矩陣.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

先求出,再由,利用向量數(shù)量積等于0,從而求得.【詳解】由題可知,因?yàn)椋杂?,得,故選:C.【點(diǎn)睛】該題考查的是有關(guān)向量的問題,涉及到的知識(shí)點(diǎn)有向量的減法坐標(biāo)運(yùn)算公式,向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題目.2、B【解析】

根據(jù)函數(shù)的奇偶性及題設(shè)中關(guān)于與關(guān)系,轉(zhuǎn)換成關(guān)于的關(guān)系式,通過(guò)變形求解出的周期,進(jìn)而算出.【詳解】為上的奇函數(shù),,而函數(shù)是上的偶函數(shù),,,故為周期函數(shù),且周期為故選:B【點(diǎn)睛】本題主要考查了函數(shù)的奇偶性,函數(shù)的周期性的應(yīng)用,屬于基礎(chǔ)題.3、C【解析】

先求出集合U,再根據(jù)補(bǔ)集的定義求出結(jié)果即可.【詳解】由題意得U=x|∵A=1,2∴CU故選C.【點(diǎn)睛】本題考查集合補(bǔ)集的運(yùn)算,求解的關(guān)鍵是正確求出集合U和熟悉補(bǔ)集的定義,屬于簡(jiǎn)單題.4、D【解析】

由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結(jié)論.【詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.【點(diǎn)睛】本題主要考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.5、B【解析】

復(fù)數(shù),在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限,可得關(guān)于a的不等式組,解得a的范圍.【詳解】,由其在復(fù)平面對(duì)應(yīng)的點(diǎn)在第二象限,得,則.故選:B.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義、不等式的解法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.6、D【解析】

根據(jù)逆運(yùn)算,倒推回求x的值,根據(jù)x的范圍取舍即可得選項(xiàng).【詳解】因?yàn)?所以當(dāng),解得

,所以3是輸入的x的值;當(dāng)時(shí),解得,所以是輸入的x的值,所以輸入的x的值為

或3,故選:D.【點(diǎn)睛】本題考查了程序框圖的簡(jiǎn)單應(yīng)用,通過(guò)結(jié)果反求輸入的值,屬于基礎(chǔ)題.7、A【解析】

在中,設(shè),,,結(jié)合三角形的內(nèi)角和及和角的正弦公式化簡(jiǎn)可求,可得,再由已知條件求得,,,考慮建立以所在的直線為軸,以所在的直線為軸建立直角坐標(biāo)系,根據(jù)已知條件結(jié)合向量的坐標(biāo)運(yùn)算求得,然后利用基本不等式可求得的最小值.【詳解】在中,設(shè),,,,即,即,,,,,,,,即,又,,,則,所以,,解得,.以所在的直線為軸,以所在的直線為軸建立如下圖所示的平面直角坐標(biāo)系,則、、,為線段上的一點(diǎn),則存在實(shí)數(shù)使得,,設(shè),,則,,,,,消去得,,所以,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,因此,的最小值為.故選:A.【點(diǎn)睛】本題是一道構(gòu)思非常巧妙的試題,綜合考查了三角形的內(nèi)角和定理、兩角和的正弦公式及基本不等式求解最值問題,解題的關(guān)鍵是理解是一個(gè)單位向量,從而可用、表示,建立、與參數(shù)的關(guān)系,解決本題的第二個(gè)關(guān)鍵點(diǎn)在于由,發(fā)現(xiàn)為定值,從而考慮利用基本不等式求解最小值,考查計(jì)算能力,屬于難題.8、B【解析】

把已知點(diǎn)坐標(biāo)代入求出,然后驗(yàn)證各選項(xiàng).【詳解】由題意,,或,,不妨取或,若,則函數(shù)為,四個(gè)選項(xiàng)都不合題意,若,則函數(shù)為,只有時(shí),,即是對(duì)稱軸.故選:B.【點(diǎn)睛】本題考查正弦型復(fù)合函數(shù)的對(duì)稱軸,掌握正弦函數(shù)的性質(zhì)是解題關(guān)鍵.9、C【解析】

由題可知,曲線與有公共點(diǎn),即方程有解,可得有解,令,則,對(duì)分類討論,得出時(shí),取得極大值,也即為最大值,進(jìn)而得出結(jié)論.【詳解】解:由題可知,曲線與有公共點(diǎn),即方程有解,即有解,令,則,則當(dāng)時(shí),;當(dāng)時(shí),,故時(shí),取得極大值,也即為最大值,當(dāng)趨近于時(shí),趨近于,所以滿足條件.故選:C.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)性質(zhì)的基本方法,考查化歸與轉(zhuǎn)化等數(shù)學(xué)思想,考查抽象概括、運(yùn)算求解等數(shù)學(xué)能力,屬于難題.10、C【解析】

由雙曲線的幾何性質(zhì)與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,所以或,由離心率公式即可算出結(jié)果.【詳解】由雙曲線的幾何性質(zhì)與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,又雙曲線的焦點(diǎn)既可在軸,又可在軸上,所以或,或.故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單幾何性質(zhì),函數(shù)的概念,考查了分類討論的數(shù)學(xué)思想.11、C【解析】

由奇函數(shù)的性質(zhì)可得,進(jìn)而可知在R上為增函數(shù),轉(zhuǎn)化條件得,解一元二次不等式即可得解.【詳解】因?yàn)槭嵌x在R上的奇函數(shù),所以,即,解得,即,易知在R上為增函數(shù).又,所以,解得.故選:C.【點(diǎn)睛】本題考查了函數(shù)單調(diào)性和奇偶性的應(yīng)用,考查了一元二次不等式的解法,屬于中檔題.12、D【解析】

設(shè),,去絕對(duì)值,根據(jù)余弦函數(shù)的性質(zhì)即可求出.【詳解】因?yàn)閷?shí)數(shù),滿足,設(shè),,,恒成立,,故則的最小值等于.故選:.【點(diǎn)睛】本題考查了橢圓的參數(shù)方程、三角函數(shù)的圖象和性質(zhì),考查了運(yùn)算能力和轉(zhuǎn)化能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、1344【解析】

分四種情況討論即可【詳解】解:數(shù)學(xué)排在第一節(jié)時(shí)有:數(shù)學(xué)排在第二節(jié)時(shí)有:數(shù)學(xué)排在第三節(jié)時(shí)有:數(shù)學(xué)排在第四節(jié)時(shí)有:所以共有1344種故答案為:1344【點(diǎn)睛】考查排列、組合的應(yīng)用,注意分類討論,做到不重不漏;基礎(chǔ)題.14、【解析】

基本事件總數(shù),恰好有2人申請(qǐng)小區(qū)房源包含的基本事件個(gè)數(shù),由此能求出該市的任意5位申請(qǐng)人中,恰好有2人申請(qǐng)小區(qū)房源的概率.【詳解】解:某市公租房源位于、、三個(gè)小區(qū),每位申請(qǐng)人只能申請(qǐng)其中一個(gè)小區(qū)的房子,申請(qǐng)其中任意一個(gè)小區(qū)的房子是等可能的,該市的任意5位申請(qǐng)人中,基本事件總數(shù),該市的任意5位申請(qǐng)人中,恰好有2人申請(qǐng)小區(qū)房源包含的基本事件個(gè)數(shù):,該市的任意5位申請(qǐng)人中,恰好有2人申請(qǐng)小區(qū)房源的概率是.故答案為:.【點(diǎn)睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題.15、【解析】

利用交集定義直接求解.【詳解】解:集合奇數(shù),偶數(shù),.故答案為:.【點(diǎn)睛】本題考查交集的求法,考查交集定義等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.16、【解析】

法一:根據(jù)直角三角形的性質(zhì)和勾股定理得,,,又由雙曲線的定義得,將離心率表示成關(guān)于的式子,再令,則,令對(duì)函數(shù)求導(dǎo)研究函數(shù)在上單調(diào)性,可求得離心率的范圍.法二:令,,,,,根據(jù)直角三角形的性質(zhì)和勾股定理得,將離心率表示成關(guān)于角的三角函數(shù),根據(jù)三角函數(shù)的恒等變化轉(zhuǎn)化為關(guān)于的函數(shù),可求得離心率的范圍.【詳解】法一:,,,,,,設(shè),則,令,所以時(shí),,在上單調(diào)遞增,,,.法二:,,令,,,,,,,,,.故答案為:.【點(diǎn)睛】本題考查求雙曲線的離心率的范圍的問題,關(guān)鍵在于將已知條件轉(zhuǎn)化為與雙曲線的有關(guān),從而將離心率表示關(guān)于某個(gè)量的函數(shù),屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見解析;(2).【解析】

(1)將代入函數(shù)解析式可得,構(gòu)造函數(shù),求得并令,由導(dǎo)函數(shù)符號(hào)判斷函數(shù)單調(diào)性并求得最大值,由即可證明恒成立,即不等式得證.(2)對(duì)函數(shù)求導(dǎo),變形后討論當(dāng)時(shí)的函數(shù)單調(diào)情況:當(dāng)時(shí),可知滿足題意;將不等式化簡(jiǎn)后構(gòu)造函數(shù),利用導(dǎo)函數(shù)求得極值點(diǎn)與函數(shù)的單調(diào)性,從而求得最小值為,分別依次代入檢驗(yàn)的符號(hào),即可確定整數(shù)的最大值;當(dāng)時(shí)不滿足題意,因?yàn)榍笳麛?shù)的最大值,所以時(shí)無(wú)需再討論.【詳解】(1)證明:當(dāng)時(shí)代入可得,令,,則,令解得,當(dāng)時(shí),所以在單調(diào)遞增,當(dāng)時(shí),所以在單調(diào)遞減,所以,則,即成立.(2)函數(shù)則,若時(shí),當(dāng)時(shí),,則在時(shí)單調(diào)遞減,所以,即當(dāng)時(shí)成立;所以此時(shí)需滿足的整數(shù)解即可,將不等式化簡(jiǎn)可得,令則令解得,當(dāng)時(shí),即在內(nèi)單調(diào)遞減,當(dāng)時(shí),即在內(nèi)單調(diào)遞增,所以當(dāng)時(shí)取得最小值,則,,,所以此時(shí)滿足的整數(shù)的最大值為;當(dāng)時(shí),在時(shí),此時(shí),與題意矛盾,所以不成立.因?yàn)榍笳麛?shù)的最大值,所以時(shí)無(wú)需再討論,綜上所述,當(dāng)時(shí),整數(shù)的最大值為.【點(diǎn)睛】本題考查了導(dǎo)數(shù)在證明不等式中的應(yīng)用,導(dǎo)數(shù)與函數(shù)單調(diào)性、極值、最值的關(guān)系和應(yīng)用,構(gòu)造函數(shù)法求最值,并判斷函數(shù)值法符號(hào),綜合性強(qiáng),屬于難題.18、(1)(2)見解析,【解析】

(1)采用分層抽樣的方法甲組抽取4人,乙組抽取3人,丙組抽取2人,丁組抽取3人,從參加問卷調(diào)查的12名學(xué)生中隨機(jī)抽取2人,基本事件總數(shù)為,這兩人來(lái)自同一小組取法共有,由此可求出所求的概率;(2)從已抽取的甲、丙兩個(gè)小組的學(xué)生中隨機(jī)抽取2人,而甲、丙兩個(gè)小組學(xué)生分別有4人和2人,所以抽取的兩人中是甲組的學(xué)生的人數(shù)的可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出隨機(jī)變量的分布列和數(shù)學(xué)期望.【詳解】(1)由題設(shè)易得,問卷調(diào)查從四個(gè)小組中抽取的人數(shù)分別為4,3,2,3(人),從參加問卷調(diào)查的12名學(xué)生中隨機(jī)抽取兩名的取法共有(種),抽取的兩名學(xué)生來(lái)自同一小組的取法共有(種),所以,抽取的兩名學(xué)生來(lái)自同一個(gè)小組的概率為(2)由(1)知,在參加問卷調(diào)查的12名學(xué)生中,來(lái)自甲、丙兩小組的學(xué)生人數(shù)分別為4人、2人,所以,抽取的兩人中是甲組的學(xué)生的人數(shù)的可能取值為0,1,2,因?yàn)樗噪S機(jī)變量的分布列為:012所求的期望為【點(diǎn)睛】此題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,考查分層抽樣、古典概型、排列組合等知識(shí),考查運(yùn)算能力,屬于中檔題.19、(1):;:.(2)【解析】

(1)由可得,由,消去參數(shù),可得直線的普通方程為.由可得,將,代入上式,可得,所以曲線的直角坐標(biāo)方程為.(2)由(1)得,的普通方程為,將其化為極坐標(biāo)方程可得,當(dāng)時(shí),,,所以.20、(1)3;(2);(3)見解析.【解析】

(1)依據(jù)下標(biāo)的關(guān)系,有,,兩式相加,即可求出;(2)依據(jù)等比數(shù)列的通項(xiàng)公式知,求出首項(xiàng)和公比即可。利用關(guān)系式,列出方程,可以解出首項(xiàng)和公比;(3)利用等差數(shù)列的定義,即可證出?!驹斀狻浚?)因?yàn)閷?duì)任意,都有,所以,,兩式相加,,解得;(2)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論