版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
貴州省六盤水市七中2025屆高二上數(shù)學期末復習檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.棱長為1的正四面體的表面積是()A. B.C. D.2.已知是虛數(shù)單位,若,則復數(shù)z的虛部為()A.3 B.-3iC.-3 D.3i3.設的內(nèi)角的對邊分別為的面積,則()A. B.C. D.4.已知函數(shù),,當時,不等式恒成立,則實數(shù)的取值范圍為()A. B.C. D.5.下列問題中是古典概型的是A.種下一粒楊樹種子,求其能長成大樹的概率B.擲一顆質(zhì)地不均勻的骰子,求出現(xiàn)1點的概率C.在區(qū)間[1,4]上任取一數(shù),求這個數(shù)大于1.5概率D.同時擲兩枚質(zhì)地均勻的骰子,求向上的點數(shù)之和是5的概率6.拋物線的焦點為,準線為,焦點在準線上的射影為點,過任作一條直線交拋物線于兩點,則為()A.銳角 B.直角C.鈍角 D.銳角或直角7.已知雙曲線方程為,過點的直線與雙曲線只有一個公共點,則符合題意的直線的條數(shù)共有()A.4條 B.3條C.2條 D.1條8.拋物線有一條重要的性質(zhì):平行于拋物線的軸的光線,經(jīng)過拋物線上的一點反射后經(jīng)過它的焦點.反之,從焦點發(fā)出的光線,經(jīng)過拋物線上的一點反射后,反射光線平行于拋物線的軸.已知拋物線,從點發(fā)出一條平行于x軸的光線,經(jīng)過拋物線兩次反射后,穿過點,則光線從A出發(fā)到達B所走過的路程為()A.8 B.10C.12 D.149.直線與橢圓交于兩點,以線段為直徑的圓恰好經(jīng)過橢圓的左焦點,則此橢圓的離心率為()A B.C. D.10.2021年小林大學畢業(yè)后,9月1日開始工作,他決定給自己開一張儲蓄銀行卡,每月的10號存錢至該銀行卡(假設當天存錢次日到賬).2021年9月10日他給卡上存入1元,以后每月存的錢數(shù)比上個月多一倍,則他這張銀行卡賬上存錢總額(不含銀行利息)首次達到1萬元的時間為()A.2022年12月11日 B.2022年11月11日C.2022年10月11日 D.2022年9月11日11.已知數(shù)列滿足,且,,則()A. B.C. D.12.過橢圓的左焦點作弦,則最短弦的長為()A. B.2C. D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列是首項為的遞增數(shù)列,若,,則滿足條件的數(shù)列的一個通項公式為______14.已知圓關于直線對稱,則________15.記為等差數(shù)列的前n項和.若,則__________16.若經(jīng)過點且斜率為1的直線與拋物線交于,兩點,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),其中(1)討論的單調(diào)性;(2)若不等式對一切恒成立,求實數(shù)k的最大值18.(12分)設:實數(shù)滿足,:實數(shù)滿足.(1)若,且為真,求實數(shù)的取值范圍;(2)若是的充分不必要條件,求實數(shù)的取值范圍.19.(12分)已知三棱柱中,面底面,,底面是邊長為的等邊三角形,,、分別在棱、上,且.(1)求證:底面;(2)在棱上找一點,使得和面所成角的余弦值為,并說明理由.20.(12分)已知拋物線的焦點為F,傾斜角為45°的直線m過點F,若此拋物線上存在3個不同的點到m的距離為,求此拋物線的準線方程21.(12分)從①,②,③,這三個條件中任選一個,補充在下面問題中并作答:已知等差數(shù)列公差大于零,且前n項和為,,______,,求數(shù)列的前n項和.(注:如果選擇多個條件分別解答,那么按照第一個解答計分)22.(10分)若存在常數(shù),使得對任意,,均有,則稱為有界集合,同時稱為集合的上界.(1)設,,試判斷A、B是否為有界集合,并說明理由;(2)已知常數(shù),若函數(shù)為有界集合,求集合的上界最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】采用數(shù)形結(jié)合,根據(jù)邊長,結(jié)合正四面體的概念,計算出正三角形的面積,可得結(jié)果【詳解】如圖由正四面體的概念可知,其四個面均是全等的等邊三角形,由其棱長為1,所以,所以可知:正四面體的表面積為,故選:D2、C【解析】由復數(shù)的除法運算可得答案.【詳解】由題得,所以復數(shù)z的虛部為-3.故選:C.3、A【解析】利用三角形面積公式、二倍角正弦公式有,再由三角形內(nèi)角的性質(zhì)及余弦定理化簡求即可.【詳解】由,∴,在中,,∴,解得.故選:A.4、C【解析】由題意得出,構(gòu)造函數(shù),可知函數(shù)在區(qū)間上單調(diào)遞增,可得出對任意的恒成立,利用參變量分離法可得出,利用導數(shù)求得函數(shù)在區(qū)間上的最大值,由此可求得實數(shù)的取值范圍.【詳解】函數(shù)的定義域為,當時,恒成立,即,構(gòu)造函數(shù),則,所以,函數(shù)在區(qū)間上為增函數(shù),則對任意的恒成立,,令,其中,則.,所以函數(shù)在上單調(diào)遞減;又,所以.因此,實數(shù)的取值范圍是.故選:C.5、D【解析】A、B兩項中的基本事件的發(fā)生不是等可能的;C項中基本事件的個數(shù)是無限多個;D項中基本事件的發(fā)生是等可能的,且是有限個.故選D【考點】古典概型的判斷6、D【解析】設出直線方程,聯(lián)立拋物線方程,利用韋達定理,求得,根據(jù)其結(jié)果即可判斷和選擇.【詳解】為說明問題,不妨設拋物線方程,則,直線斜率顯然不為零,故可設直線方程為,聯(lián)立,可得,設坐標為,則,故,當時,,;當時,,;故為銳角或直角.故選:D.7、A【解析】利用雙曲線漸近線的性質(zhì),結(jié)合一元二次方程根的判別式進行求解即可.【詳解】解:雙曲線的漸近線方程為,右頂點為.①直線與雙曲線只有一個公共點;②過點平行于漸近線時,直線與雙曲線只有一個公共點;③設過的切線方程為與雙曲線聯(lián)立,可得,由,即,解得,直線的條數(shù)為1.綜上可得,直線的條數(shù)為4.故選:A,.8、C【解析】利用拋物線的定義求解.【詳解】如圖所示:焦點為,設光線第一次交拋物線于點,第二次交拋物線于點,過焦點F,準線方程為:,作垂直于準線于點,作垂直于準線于點,則,,,,故選:C9、D【解析】根據(jù)題意作出示意圖,根據(jù)圓的性質(zhì)以及直線的傾斜角求解出的長度,再根據(jù)橢圓的定義求解出的關系,則橢圓離心率可求.【詳解】設橢圓的左右焦點分別為,如下圖:因為以線段為直徑的圓恰好經(jīng)過橢圓的左焦點,所以且,所以,又因為的傾斜角為,所以,所以為等邊三角形,所以,所以,因為,所以,所以,所以,所以,故選:D.10、C【解析】分析可得每月所存錢數(shù)依次成首項為1,公比為2的等比數(shù)列,其前n項和為,分析首次達到1萬元的值,即得解【詳解】依題意可知,小林從第一個月開始,每月所存錢數(shù)依次成首項為1,公比為2的等比數(shù)列,其前n項和為.因為為增函數(shù),且,所以第14個月的10號存完錢后,他這張銀行卡賬上存錢總額首次達到1萬元,即2022年10月11日他這張銀行卡賬上存錢總額首次達到1萬元.故選:C11、A【解析】由已知兩個不等式,利用“兩邊夾”思想求得,然后利用累加法可求得【詳解】∵,∴,∴,又,∴,即,∴故選:A【點睛】本題考查數(shù)列的遞推式,由遞推式的特征,采用累加法求得數(shù)列的項.解題關鍵是利用“兩邊夾”思想求解12、A【解析】求出橢圓的通徑,即可得到結(jié)果【詳解】過橢圓的左焦點作弦,則最短弦的長為橢圓的通徑:故選:A二、填空題:本題共4小題,每小題5分,共20分。13、,答案不唯一【解析】由,,可得,進而解得,然后寫出通項公式即可.【詳解】設數(shù)列的公差為d,由題可得,因為,,所以有,解得,只要公差d滿足即可,然后根據(jù)等差數(shù)列的通項公式寫出即可,我們可以取,此時.故答案為:,答案不唯一.14、1【解析】根據(jù)題意,圓心在直線上,進而求得答案.【詳解】由題意,圓心在直線上,則.故答案為:1.15、【解析】因為是等差數(shù)列,根據(jù)已知條件,求出公差,根據(jù)等差數(shù)列前項和,即可求得答案.【詳解】是等差數(shù)列,且,設等差數(shù)列的公差根據(jù)等差數(shù)列通項公式:可得即:整理可得:解得:根據(jù)等差數(shù)列前項和公式:可得:.故答案:.【點睛】本題主要考查了求等差數(shù)列的前項和,解題關鍵是掌握等差數(shù)列的前項和公式,考查了分析能力和計算能力,屬于基礎題.16、【解析】由題意寫出直線的方程與拋物線方程聯(lián)立,得出韋達定理,由弦長公式可得答案.【詳解】設,則直線的方程為由,得所以所以故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)答案見解析(2)【解析】(1)先對函數(shù)求導,然后分和討論導數(shù)的正負,從而可求出函數(shù)的單調(diào)區(qū)間,(2)由題意得恒成立,構(gòu)造函數(shù),利用導數(shù)求出其最小值即可【小問1詳解】由,得當時,恒成立,∴在上單調(diào)遞增當時,令,得,得,∴在上單調(diào)遞增,在上單調(diào)遞減綜上所述:當時,在上單調(diào)遞增;當時,在上單調(diào)遞增,在上單調(diào)遞減【小問2詳解】依題意得對一切恒成立,即令,則令,則在上單調(diào)遞增,而當時,,即;當時,,即∴在上單調(diào)遞減,在上單調(diào)遞增∴∴,即k的最大值為18、(1)(2)【解析】(1)首先分別求出、為真時參數(shù)的取值范圍,再由為真,取并集即可;(2)首先解一元二次不等式,依題意是的必要不充分條件,則可推出,而不能推出,即可得到不等式組,解得即可;【小問1詳解】解:當時,,即,解得,即為真時,實數(shù)的取值范圍為實數(shù)滿足,即,解得:,即為真時,實數(shù)的取值范圍為因,所以,即;【小問2詳解】解:由,即,所以,因為是的充分不必要條件,所以是的必要不充分條件,則可推出,而不能推出,則,解得;19、(1)證明見解析;(2)為的中點,理由見解析.【解析】(1)取的中點,連接,利用面面垂直的性質(zhì)定理可得出平面,可得出,再由,結(jié)合線面垂直的判定定理可證得結(jié)論成立;(2)以點為坐標原點,、、的方向分別為、、軸的正方向建立空間直角坐標系,設點,利用空間向量法可得出關于實數(shù)的方程,求出的值,即可得出結(jié)論.【詳解】(1)取的中點,連接,如圖:因為三角形是等邊三角形,所以,又因為面底面,平面平面,面,所以平面,又面,所以,又,,平面;(2)以點為坐標原點,、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標系,則、、,在上找一點,其中,,,,設面的一個法向量,則,不妨令,則,和面所成角的余弦值為,則,解得或(舍),所以,為的中點,符合題意.20、【解析】設出直線m的方程,利用方程組聯(lián)立、一元二次方程根的判別式求出與直線m平行的拋物線的切線方程,結(jié)合平行線間距離公式進行求解即可.【詳解】拋物線的焦點坐標為:,設直線m為,設為與拋物線相切,聯(lián)立直線與拋物線方程,化簡整理可得,,則,解得,且,故兩平行線間的距離,解得,故所求的準線方程為21、;【解析】將條件①②③轉(zhuǎn)化為的形式,列方程組,并求解,寫出的通項公式,從而表示出,利用裂項相消法求和.【詳解】選①:設等差數(shù)列首項為,公差為,因為,,所以,所以,所以,所以選②:設等差數(shù)列首項為,公差為,因為,,所以,所以,所以,所以選③:設等差數(shù)列首項為,公差為,因為,,所以,所以,所以,所以【點睛】數(shù)列求和的方法技巧(1)倒序相加:用于等差數(shù)列、與二項式系數(shù)、對稱性相關聯(lián)的數(shù)列的求和(2)錯位相減:用于等差數(shù)列與等比數(shù)列的積數(shù)列的求和(3)分組求和:用于若干個等差或等比數(shù)列的和或差數(shù)列的求和22、(1)A不是有界集合,B是有界集合,理由見解析(2)【解析】(1)解不等式求得集合A;由,根據(jù)指數(shù)函數(shù)的性質(zhì)求得集合B,由此可得結(jié)論;(2)由函數(shù),得出函數(shù)單調(diào)遞減,即有,分和兩種情況討論,求得集合的上界,再由集
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 主管部門履職情況檢查表
- 年儲存大蒜3000噸冷庫建設項目可行性研究報告寫作模板-申批備案
- 景陽岡課件教學課件
- 廣東省肇慶聯(lián)盟校2025屆生物高一上期末學業(yè)水平測試試題含解析
- 山西省山西大學附中2025屆高一生物第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析
- 2025屆河北省石家莊市晉州市第一中學高三英語第一學期期末綜合測試模擬試題含解析
- 2025屆浙江省杭州市西湖高中英語高三第一學期期末調(diào)研試題含解析
- 安徽省六安市第一中學、合肥八中、阜陽一中三校2025屆高一數(shù)學第一學期期末綜合測試試題含解析
- 2025屆安徽省宿州市十三校高三英語第一學期期末達標檢測試題含解析
- 2024年招標代理協(xié)議合同
- 餐飲員工心態(tài)培訓課件
- 2024年注冊消防工程師題庫及參考答案【完整版】
- 維護兒童心理健康的案例分析
- 中考英語一模作文-征集“文化自信類”寫作
- 打破性別刻板印象 課件-2023-2024學年高中下學期心理健康
- 草坪施工工藝
- 《草叢中》(課件)教案
- T-SZHW 001-2024 深圳市城市管家服務管理規(guī)范(試行)
- 山西省忻州原平市2023-2024學年七年級上學期期中語文試題
- 五年級上冊小數(shù)乘除口算練習400題及答案
- 二年級上冊口算練習1000道
評論
0/150
提交評論