河南省駐馬店市上蔡縣第二高級中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第1頁
河南省駐馬店市上蔡縣第二高級中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第2頁
河南省駐馬店市上蔡縣第二高級中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第3頁
河南省駐馬店市上蔡縣第二高級中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第4頁
河南省駐馬店市上蔡縣第二高級中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河南省駐馬店市上蔡縣第二高級中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線的傾斜角為,在軸上的截距為,則此直線的方程為()A. B.C. D.2.在二面角的棱上有兩個點、,線段、分別在這個二面角的兩個面內(nèi),并且都垂直于棱,若,,,,則這個二面角的大小為()A. B.C. D.3.某校開展研學(xué)活動時進行勞動技能比賽,通過初選,選出共6名同學(xué)進行決賽,決出第1名到第6名的名次(沒有并列名次),和去詢問成績,回答者對說“很遺?,你和都末拿到冠軍;對說“你當(dāng)然不是最差的”.試從這個回答中分析這6人的名次排列順序可能出現(xiàn)的結(jié)果有()A.720種 B.600種C.480種 D.384種4.已知實數(shù),,則下列不等式恒成立的是()A. B.C. D.5.在四面體中,設(shè),若F為BC的中點,P為EF的中點,則=()A. B.C. D.6.已知圓與圓外切,則()A. B.C. D.7.已知向量,且,則()A. B.C. D.8.已知拋物線,則拋物線的焦點到其準線的距離為()A. B.C. D.9.已知橢圓:與雙曲線:有相同的焦點、,橢圓的離心率為,雙曲線的離心率為,點P為橢圓與雙曲線的交點,且,則的最大值為()A. B.C. D.10.觀察:則第行的值為()A. B.C. D.11.一輛汽車做直線運動,位移與時間的關(guān)系為,若汽車在時的瞬時速度為12,則()A. B.C.2 D.312.的展開式中的系數(shù)是()A.1792 B.C.448 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為F,A為拋物線C上一點.以F為圓心,F(xiàn)A為半徑的圓交拋物線C的準線于B,D兩點,A,F(xiàn),B三點共線,且,則______14.已知復(fù)數(shù)對應(yīng)的點在復(fù)平面第一象限內(nèi),甲、乙、丙三人對復(fù)數(shù)的陳述如下為虛數(shù)單位:甲:;乙:;丙:,在甲、乙、丙三人陳述中,有且只有兩個人的陳述正確,則復(fù)數(shù)______15.基礎(chǔ)建設(shè)對社會經(jīng)濟效益產(chǎn)生巨大的作用.某市投入億元進行基礎(chǔ)建設(shè),年后產(chǎn)生億元社會經(jīng)濟效益.若該市投資基礎(chǔ)建設(shè)4年后產(chǎn)生的社會經(jīng)濟效益是投資額的2倍,則再過______年.該項投資產(chǎn)生的社會經(jīng)濟效益是投資額的8倍16.平面直角坐標系內(nèi)動點M()與定點F(4,0)的距離和M到定直線的距離之比是常數(shù),則動點M的軌跡是___________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:上的點到其準線的距離為5.(1)求拋物線的方程;(2)已知為原點,點在拋物線上,若的面積為6,求點的坐標.18.(12分)已知的二項展開式中所有項的二項式系數(shù)之和為,(1)求的值;(2)求展開式的所有有理項(指數(shù)為整數(shù)),并指明是第幾項19.(12分)如圖,在四棱錐中,已知平面ABCD,為等邊三角形,,,.(1)證明:平面PAD;(2)若M是BP的中點,求二面角的余弦值.20.(12分)已知為坐標原點,圓的圓心在軸上,點、均在圓上.(1)求圓的標準方程;(2)若直線與橢圓交于兩個不同的點、,點在圓上,求面積的最大值.21.(12分)已知函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)在區(qū)間上的值域22.(10分)已知拋物線的焦點為,點為拋物線上一點,且.(1)求拋物線方程;(2)直線與拋物線相交于兩個不同的點,為坐標原點,若,求實數(shù)的值;

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】求出直線的斜率,利用斜截式可得出直線的方程.【詳解】直線的斜率為,由題意可知,所求直線的方程為.故選:D.2、C【解析】設(shè)這個二面角的度數(shù)為,由題意得,從而得到,由此能求出結(jié)果.【詳解】設(shè)這個二面角的度數(shù)為,由題意得,,,解得,∴,∴這個二面角的度數(shù)為,故選:C.【點睛】本題考查利用向量的幾何運算以及數(shù)量積研究面面角.3、D【解析】不是第一名且不是最后一名,的限制最多,先排有4種情況,再排,也有4種情況,余下的問題是4個元素在4個位置全排列,根據(jù)分步計數(shù)原理求解即可【詳解】由題意,不是第一名且不是最后一名,的限制最多,故先排,有4種情況,再排,也有4種情況,余下4人有種情況,利用分步相乘計數(shù)原理知有種情況故選:D.4、C【解析】根據(jù)不等式性質(zhì)和作差法判斷大小依次判斷每個選項得到答案.【詳解】當(dāng)時,不等式不成立,錯誤;,故錯誤正確;當(dāng)時,不等式不成立,錯誤;故選:.【點睛】本題考查了不等式的性質(zhì),作差法判斷大小,意在考查學(xué)生對于不等式知識的綜合應(yīng)用.5、A【解析】作出圖示,根據(jù)空間向量的加法運算法則,即可得答案.【詳解】如圖示:連接OF,因為P為EF中點,,F(xiàn)為BC的中點,則,故選:A6、D【解析】根據(jù)兩圓外切關(guān)系,圓心距離等于半徑的和列方程求參數(shù).【詳解】由題設(shè),兩圓圓心分別為、,半徑分別為1、r,∴由外切關(guān)系知:,可得.故選:D.7、A【解析】利用空間向量共線的坐標表示即可求解.【詳解】由題意可得,解得,所以.故選:A8、D【解析】將拋物線方程化為標準方程,由此確定的值即可.【詳解】由可得拋物線標準方程為:,,拋物線的焦點到其準線的距離為.故選:D.9、B【解析】不妨設(shè)點為第一象限的交點,結(jié)合橢圓與雙曲線的定義得到,進而結(jié)合余弦定理得到,即,令然后結(jié)合三角函數(shù)即可求出結(jié)果.【詳解】不妨設(shè)點為第一象限的交點,則由橢圓的定義可得,由雙曲線的定義可得,所以,因此,即,所以,即,令因此,其中,所以當(dāng)時,有最大值,最大值為,故選:B.【點睛】一、橢圓的離心率是橢圓最重要的幾何性質(zhì),求橢圓的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式;②只需要根據(jù)一個條件得到關(guān)于a,b,c的齊次式,結(jié)合b2=a2-c2轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)二、雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式;②只需要根據(jù)一個條件得到關(guān)于a,b,c的齊次式,結(jié)合b2=c2-a2轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)10、B【解析】根據(jù)數(shù)陣可知第行為,利用等差數(shù)列求和,即可得到答案;【詳解】根據(jù)數(shù)陣可知第行為,,故選:B11、D【解析】首先求出函數(shù)的導(dǎo)函數(shù),依題意可得,即可解得;【詳解】解:因為,所以又汽車在時的瞬時速度為12,即即,解得故選:D【點睛】本題考查導(dǎo)數(shù)在物理中的應(yīng)用,屬于基礎(chǔ)題.12、D【解析】根據(jù)二項式展開式的通項公式計算出正確答案.【詳解】的展開式中,含的項為.所以的系數(shù)是.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】求得拋物線的焦點和準線方程,由,,三點共線,推得,由三角形的中位線性質(zhì)可得到準線的距離,可得的值【詳解】拋物線的焦點為,,準線方程為,因為,,三點共線,可得為圓的直徑,如圖示:設(shè)準線交x軸于E,所以,則,由拋物線的定義可得,又是的中點,所以到準線的距離為,故答案為:214、##【解析】設(shè),則,然后分別求出甲,乙,丙對應(yīng)的結(jié)論,先假設(shè)甲正確,則得出乙錯誤,丙正確,由此即可求解【詳解】解:設(shè),則,甲:由可得,則,乙:由可得:,丙:由可得,即,所以,若,則,則不成立,,則,解得或,所以甲,丙正確,乙錯誤,此時或,又復(fù)數(shù)對應(yīng)的點在復(fù)平面第一象限內(nèi),所以,故答案為:15、8【解析】由4年后產(chǎn)生的社會經(jīng)濟效益是投資額的2倍,代入已知函數(shù)式求得參數(shù),再求得社會經(jīng)濟效益是投資額的8倍時的時間,即為所求結(jié)論【詳解】由條件得,∴,即.設(shè)投資年后,產(chǎn)生的社會經(jīng)濟效益是投資額的8倍,則有,解得,所以再過年,該項投資產(chǎn)生社會經(jīng)濟效益是投資額的8倍故答案為:816、【解析】根據(jù)直接法,即可求軌跡.【詳解】解:動點與定點的距離和它到定直線的距離之比是常數(shù),根據(jù)題意得,點的軌跡就是集合,由此得.將上式兩邊平方,并化簡,得所以,動點的軌跡是長軸長、短軸長分別為12、的橢圓故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)結(jié)合拋物線的定義求得,由此求得拋物線的方程.(2)設(shè),根據(jù)三角形的面積列方程,求得的值,進而求得點的坐標.【小問1詳解】由拋物線的方程可得其準線方程,依拋物線的性質(zhì)得,解得.∴拋物線的方程為.【小問2詳解】將代入,得.所以,直線的方程為,即.設(shè),則點到直線的距離,又,由題意得,解得或.∴點的坐標是或.18、(1)(2)【解析】(1)由二項式系數(shù)和公式可得答案;(2)求出的通項,利用的指數(shù)為整數(shù)可得答案.【小問1詳解】的二項展開式中所有項的二項式系數(shù)之和,所以.【小問2詳解】,因此時,有理項,有理項是第一項和第七項.19、(1)證明見解析(2)【解析】(1)根據(jù)條件先證明,再根據(jù)線面平行的判定定理證明平面PAD;(2)確定坐標原點,建立空間直角坐標系,從而求出相關(guān)的點的坐標,進而求得相關(guān)向量的坐標,再求相關(guān)平面的法向量,根據(jù)向量的夾角公式求得結(jié)果.【小問1詳解】證明:由已知為等邊三角形,且,所以又因為,,在中,,又,所以在底面中,,又平面,平面,所以平面.【小問2詳解】解:取的中點,連接,則,由(1)知,所以,分別以,,為,,軸建立空間直角坐標系.則,,,所以,由已知可知平面ABCD的一個法向量設(shè)平面的一個法向量為,由,即,得,令,則,所以,由圖形可得二面角為銳角,所以二面角的余弦值為.20、(1);(2).【解析】(1)求出圓心坐標,可求得圓的半徑,進而可得出圓的標準方程;(2)求得點到直線的距離,將直線的方程與橢圓的方程聯(lián)立,求得的表達式,利用三角形的面積公式結(jié)合基本不等式可求得結(jié)果.【小問1詳解】解:由題知,線段的中點為,直線的斜率,所以線段的中垂線為,即為,所以圓的圓心為軸與的交點,所以圓的半徑,所以圓的標準方程為.【小問2詳解】解:由題知:圓心到直線的距離,因為,所以圓心到直線的距離,所以到直線的距離,設(shè)點、,聯(lián)立可得,,,則,所以,,所以,所以,所以當(dāng)且僅當(dāng),即時等號成立,所以當(dāng)時,取得最大值.【點睛】方法點睛:圓錐曲線中的最值問題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來求最值;二是代數(shù)法,常將圓錐曲線的最值問題轉(zhuǎn)化為二次函數(shù)或三角函數(shù)的最值問題,然后利用基本不等式、函數(shù)的單調(diào)性或三角函數(shù)的有界性等求最值21、(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)【解析】(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;(2)根據(jù)函數(shù)的單調(diào)性求出函數(shù)的極值點,從而求出函數(shù)的最值即可【詳解】解:(1)由題意得,,令,得,令,得或,故函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)易知,因為,所以(或由,可得),又當(dāng)時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論