




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
北京專家2025屆高一上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.銳角三角形的內(nèi)角、滿足:,則有()A. B.C. D.2.設(shè),為兩個不同的平面,,為兩條不同的直線,則下列命題中正確的為()A.若,,則B.若,,則C.若,,則D.若,,則3.已知為三角形內(nèi)角,且,若,則關(guān)于的形狀的判斷,正確的是A.直角三角形 B.銳角三角形C.鈍角三角形 D.三種形狀都有可能4.在中,為邊的中點,則()A. B.C. D.5.已知,設(shè)函數(shù),的最大值為A,最小值為B,那么A+B的值為()A.4042 B.2021C.2020 D.20246.某人用如圖所示的紙片,沿折痕折后粘成一個四棱錐形的“走馬燈”,正方形做燈底,且有一個三角形面上寫上了“年”字,當(dāng)燈旋轉(zhuǎn)時,正好看到“新年快樂”的字樣,則在①、②、③處應(yīng)依次寫上A.快、新、樂 B.樂、新、快C.新、樂、快 D.樂、快、新7.方程的解所在區(qū)間是()A. B.C. D.8.某四棱錐的三視圖如圖所示,則該四棱錐的最長的棱長度為()A. B.C. D.9.已知角α的始邊與x軸的正半軸重合,頂點在坐標(biāo)原點,角α終邊上的一點P到原點的距離為,若α=,則點P的坐標(biāo)為()A.(1,) B.(,1)C.() D.(1,1)10.“密位制”是用于航海方面的一種度量角的方法,我國采用的“密位制”是密位制,即將一個圓周角分為等份,每一個等份是一個密位,那么密位對應(yīng)弧度為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù).(1)當(dāng)函數(shù)取得最大值時,求自變量x的集合;(2)完成下表,并在平面直角坐標(biāo)系內(nèi)作出函數(shù)在的圖象.x0y12.定義在上的函數(shù)滿足則________.13.已知上的奇函數(shù)是增函數(shù),若,則的取值范圍是________14.使三角式成立的的取值范圍為_________15.設(shè)函數(shù),若其定義域內(nèi)不存在實數(shù),使得,則的取值范圍是______16.邊長為2的正方形ABCD沿對角線BD折成直二面角,則折疊后AC的長為________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知.(Ⅰ)若,求的值;(Ⅱ)若為第三象限角,且,求的值.18.中國茶文化博大精深,茶水的口感與茶葉類型和茶水的溫度有關(guān).經(jīng)驗表明,某種綠茶,用一定溫度的水泡制,再等到茶水溫度降至某一溫度時,可以產(chǎn)生最佳口感.某研究員在泡制茶水的過程中,每隔1min測量一次茶水溫度,收集到以下數(shù)據(jù):時間/min012345水溫/℃85.0079.0073.6068.7464.3660.42設(shè)茶水溫度從85°C開始,經(jīng)過tmin后溫度為y℃,為了刻畫茶水溫度隨時間變化的規(guī)律,現(xiàn)有以下兩種函數(shù)模型供選擇:①;②(1)選出你認(rèn)為最符合實際的函數(shù)模型,說明理由,并參考表格中前3組數(shù)據(jù),求出函數(shù)模型的解析式;(2)若茶水溫度降至55℃時飲用,可以產(chǎn)生最佳口感,根據(jù)(1)中的函數(shù)模型,剛泡好的茶水大約需要放置多長時間才能達(dá)到最佳飲用口感?(參考數(shù)據(jù):,)19.過圓內(nèi)一點P(3,1)作弦AB,當(dāng)|AB|最短時,求弦長|AB|.20.已知函數(shù)的部分圖象如圖所示()求函數(shù)的解析式()求函數(shù)在區(qū)間上的最大值和最小值21.設(shè)函數(shù).(1)求的單調(diào)增區(qū)間;(2)求在上的最大值與最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)三角恒等變換及誘導(dǎo)公式化簡變形即可.【詳解】將,變形為則,又,故,即,,因為內(nèi)角、都為銳角,則,故,即,,所以.故選:C.2、D【解析】根據(jù)點線面位置關(guān)系,其中D選項是面面垂直的判定定理,在具體物體中辨析剩余三個選項.【詳解】考慮在如圖長方體中,平面,但不能得出平面,所以選項A錯誤;平面,平面,但不能得出,所以選項B錯誤;平面平面,平面,但不能得出平面;其中D選項是面面垂直的判定定理.故選:D【點睛】此題考查線面平行與垂直的辨析,關(guān)鍵在于準(zhǔn)確掌握基本定理,并應(yīng)用定理進(jìn)行推導(dǎo)及辨析.3、C【解析】利用同角平方關(guān)系可得,,結(jié)合可得,從而可得的取值范圍,進(jìn)而可判斷三角形的形狀【詳解】解:,,為三角形內(nèi)角,,為鈍角,即三角形為鈍角三角形故選C【點睛】本題主要考查了利用同角平方關(guān)系的應(yīng)用,其關(guān)鍵是變形之后從的符號中判斷的取值范圍,屬于三角函數(shù)基本技巧的運用4、B【解析】由平面向量的三角形法則和數(shù)乘向量可得解【詳解】由題意,故選:B【點睛】本題考查了平面向量的線性運算,考查了學(xué)生綜合分析,數(shù)形結(jié)合的能力,屬于基礎(chǔ)題5、D【解析】由已知得,令,則,由的單調(diào)性可求出最大值和最小值的和為,即可求解.【詳解】函數(shù)令,∴,又∵在,時單調(diào)遞減函數(shù);∴最大值和最小值的和為,函數(shù)的最大值為,最小值為;則;故選:6、A【解析】根據(jù)四棱錐圖形,正好看到“新年快樂”的字樣,可知順序為②年①③,即可得出結(jié)論【詳解】根據(jù)四棱錐圖形,正好看到“新年快樂”的字樣,可知順序為②年①③,故選A【點睛】本題考查四棱錐的結(jié)構(gòu)特征,考查學(xué)生對圖形的認(rèn)識,屬于基礎(chǔ)題.7、C【解析】判斷所給選項中的區(qū)間的兩個端點的函數(shù)值的積的正負(fù)性即可選出正確答案.【詳解】∵,∴,,,,∴,∵函數(shù)的圖象是連續(xù)的,∴函數(shù)的零點所在的區(qū)間是.故選C【點睛】本題考查了根據(jù)零存在原理判斷方程的解所在的區(qū)間,考查了數(shù)學(xué)運算能力.8、A【解析】先由三視圖得出該幾何體的直觀圖,結(jié)合題意求解即可.【詳解】由三視圖可知其直觀圖,該幾何體為四棱錐P-ABCD,最長的棱為PA,則最長的棱長為,故選A【點睛】本題主要考查幾何體的三視圖,屬于基礎(chǔ)題型.9、D【解析】設(shè)出P點坐標(biāo)(x,y),利用正弦函數(shù)和余弦函數(shù)的定義結(jié)合的三角函數(shù)值求得x,y值得答案【詳解】設(shè)點P的坐標(biāo)為(x,y),則由三角函數(shù)的定義得即故點P的坐標(biāo)為(1,1).故選D【點睛】本題考查任意角的三角函數(shù)的定義,是基礎(chǔ)的計算題10、B【解析】根據(jù)弧度制公式即可求得結(jié)果【詳解】密位對應(yīng)弧度為故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、(1)(2)答案見解析【解析】(1)由三角恒等變換求出解析式,再求得最大值時的x的集合,(2)由五點法作圖,列出表格,并畫圖即可.【小問1詳解】令,函數(shù)取得最大值,解得,所以此時x的集合為.【小問2詳解】表格如下:x0y11作圖如下,12、【解析】表示周期為3的函數(shù),故,故可以得出結(jié)果【詳解】解:表示周期為3的函數(shù),【點睛】本題考查了函數(shù)的周期性,解題的關(guān)鍵是要能根據(jù)函數(shù)周期性的定義得出函數(shù)的周期,從而進(jìn)行解題13、【解析】先通過函數(shù)為奇函數(shù)將原式變形,進(jìn)而根據(jù)函數(shù)為增函數(shù)求得答案.【詳解】因為函數(shù)為奇函數(shù),所以,而函數(shù)在R上為增函數(shù),則.故答案為:.14、【解析】根據(jù)同角三角函數(shù)間的基本關(guān)系,化為正余弦函數(shù),即可求出.【詳解】因為,,所以,所以,所以終邊在第三象限,.【點睛】本題主要考查了同角三角函數(shù)間的基本關(guān)系,三角函數(shù)在各象限的符號,屬于中檔題.15、【解析】按的取值范圍分類討論.【詳解】當(dāng)時,定義域,,滿足要求;當(dāng)時,定義域,取,,時,,不滿足要求;當(dāng)時,定義域,,,滿足要求;當(dāng)時,定義域,取,,時,,不滿足要求;綜上:故答案為:【點睛】關(guān)鍵點睛:由參數(shù)變化引起的分類討論,可根據(jù)題設(shè)按參數(shù)在不同區(qū)間,對應(yīng)函數(shù)的變化,找到參數(shù)的取值范圍.16、2【解析】取的中點,連接,,則,則為二面角的平面角點睛:取的中點,連接,,根據(jù)正方形可知,,則為二面角的平面角,在三角形中求出的長.本題主要是在折疊問題中考查了兩點間的距離.折疊問題要注意分清在折疊前后哪些量發(fā)生了變化,哪里量沒變?nèi)?、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由誘導(dǎo)公式化簡得,代入即可得解;(Ⅱ)由誘導(dǎo)公式可得,再由同角三角函數(shù)的平方關(guān)系可得,代入即可得解.【詳解】(Ⅰ)由于,又,所以.(Ⅱ)因為,所以.又因為第三象限角,所以,所以.18、(1);(2)【解析】(1)根據(jù)表中數(shù)據(jù)可知,隨著時間的變化,溫度越來越低直至室溫,所以選擇模型①,再列出三個方程,解出,即可得到函數(shù)模型的解析式;(2)令,即可求解得出【小問1詳解】由表中數(shù)據(jù)可知,隨著時間的變化,溫度越來越低直至室溫,就不再下降,所以選擇模型①:由前3組數(shù)據(jù)可得,解得,所以函數(shù)模型為【小問2詳解】由題意可知,即,所以,所以剛泡好的茶水大約需要放置才能達(dá)到最佳飲用口感.19、.【解析】考慮直線AB的斜率不存在時,求出A,B坐標(biāo),得到,當(dāng)直線AB的斜率存在時,圓的圓心(4,2),半徑r=3,圓心(4,2)到直線AB的距離為:,利用勾股定理基本不不等式即可求出圓的最短的弦長【詳解】(1)當(dāng)直線AB的斜率不存在時,,所以(2)當(dāng)直線AB的斜率存在時,圓心(4,2)到直線AB的距離為:,即,當(dāng)時取得最小值7,弦長的最小值為.綜上弦長的最小值為.【點睛】本題考查圓的最短弦長的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意兩點間距離公式的合理運用20、();(),【解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 把握學(xué)科知識的脈絡(luò):2024年育嬰師試題及答案
- 發(fā)展社區(qū)傳統(tǒng)手工藝的思路計劃
- 高效生產(chǎn)團隊的組建策略計劃
- 幼兒園心理輔導(dǎo)工作計劃
- 前臺接待的流程與技巧總結(jié)計劃
- 本地服務(wù)行業(yè)安全管理總結(jié)計劃
- 人類基因組的基本結(jié)構(gòu)試題及答案
- 2024年基金從業(yè)考試學(xué)習(xí)試題及答案
- 助你的2024人力資源管理師試題及答案
- 第二單元 課題3 制取氧氣第2課時教學(xué)設(shè)計-2024-2025學(xué)年九年級化學(xué)人教版(2024)上冊
- 醫(yī)療器械經(jīng)營質(zhì)量管理制度及工作程序-完整版
- (二模)溫州市2025屆高三第二次適應(yīng)性考試英語試卷(含答案)+聽力音頻+聽力原文
- 行政事業(yè)單位固定資產(chǎn)培訓(xùn)
- 6.1.2化學(xué)反應(yīng)與電能 課件 2024-2025學(xué)年高一下學(xué)期化學(xué)人教版(2019)必修第二冊
- 2025年云南省農(nóng)業(yè)大學(xué)招聘工作人員歷年自考難、易點模擬試卷(共500題附帶答案詳解)
- (二診)成都市2022級2025屆高中畢業(yè)班第二次診斷性檢測語文試卷(含官方答案)
- 湖南省長沙市2024-2025學(xué)年九年級下學(xué)期入學(xué)考試英語試卷(含答案無聽力原文及音頻)
- 2025年國家會展中心上海有限責(zé)任公司招聘筆試參考題庫含答案解析
- 2024國家電投集團中國電力招聘(22人)筆試參考題庫附帶答案詳解
- 《餐廳案例》課件
- 2025年教育革新:利用AI技術(shù)打造個性化學(xué)習(xí)
評論
0/150
提交評論