2025屆河北省景縣中學高二上數(shù)學期末統(tǒng)考試題含解析_第1頁
2025屆河北省景縣中學高二上數(shù)學期末統(tǒng)考試題含解析_第2頁
2025屆河北省景縣中學高二上數(shù)學期末統(tǒng)考試題含解析_第3頁
2025屆河北省景縣中學高二上數(shù)學期末統(tǒng)考試題含解析_第4頁
2025屆河北省景縣中學高二上數(shù)學期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆河北省景縣中學高二上數(shù)學期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點O為坐標原點,拋物線C:的焦點為F,點T在拋物線C的準線上,線段FT與拋物線C的交點為W,,則()A.1 B.C. D.2.“楊輝三角”是中國古代重要的數(shù)學成就,它比西方的“帕斯卡三角形”早了多年,如圖是由“楊輝三角”拓展而成的三角形數(shù)陣,記為圖中虛線上的數(shù),,,,…構(gòu)成的數(shù)列的第項,則的值為()A. B.C. D.3.過雙曲線右焦點F作雙曲線一條漸近線的垂線,垂足為A,與另一條漸近線交于點B,若,則雙曲線C的離心率為()A.或 B.2或C.或 D.2或4.已知雙曲線,過點作直線l與雙曲線交于A,B兩點,則能使點P為線段AB中點的直線l的條數(shù)為()A.0 B.1C.2 D.35.有一機器人的運動方程為,(是時間,是位移),則該機器人在時刻時的瞬時速度為()A. B.C. D.6.若,都是實數(shù),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件7.已知雙曲線C的離心率為,則雙曲線C的漸近線方程為()A. B.C. D.8.已知等差數(shù)列的公差為,則“”是“數(shù)列為單調(diào)遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件9.已知橢圓C的焦點為,過F2的直線與C交于A,B兩點.若,,則C的方程為A. B.C. D.10.設(shè)雙曲線()的焦距為12,則()A.1 B.2C.3 D.411.過點且與拋物線只有一個公共點的直線有()A.1條 B.2條C.3條 D.0條12.2019年湖南等8省公布了高考改革綜合方案將采取“”模式即語文、數(shù)學、英語必考,考生首先在物理、歷史中選擇1門,然后在思想政治、地理、化學、生物中選擇2門,一名同學隨機選擇3門功課,則該同學選到歷史、地理兩門功課的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.命題“x≥1,x2-2x+4≥0”的否定為____________.14.若點P為雙曲線上任意一點,則P滿足性質(zhì):點P到右焦點的距離與它到直線的距離之比為離心率e,若C的右支上存在點Q,使得Q到左焦點的距離等于它到直線的距離的6倍,則雙曲線的離心率的取值范圍是______15.已知數(shù)列的前項和為,且滿足,若對于任意的,不等式恒成立,則實數(shù)的取值范圍為____________.16.已知直線與圓相切,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,曲線C的參數(shù)方程為,(為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.(1)寫出曲線C的極坐標方程;(2)已知直線與曲線C相交于A,B兩點,求.18.(12分)已知數(shù)列的前項和是,且,等差數(shù)列中,(1)求數(shù)列的通項公式;(2)定義:記,求數(shù)列的前20項和19.(12分)2021年國務(wù)院政府工作報告中指出,扎實做好碳達峰、碳中和各項工作,制定2030年前碳排放達峰行動方案,優(yōu)化產(chǎn)業(yè)結(jié)構(gòu)和能源結(jié)構(gòu).汽車行業(yè)是碳排放量比較大的行業(yè)之一,若現(xiàn)對CO2排放量超過130g/km的MI型新車進行懲罰(視為排放量超標),某檢測單位對甲、乙兩類MI型品牌的新車各抽取了5輛進行CO2排放量檢測,記錄如下(單位:g/km):甲80110120140150乙100120xy160經(jīng)測算發(fā)現(xiàn),乙類品牌車CO2排放量的均值為乙=120g/km.(1)求甲類品牌汽車的排放量的平均值及方差;(2)若乙類品牌汽車比甲類品牌汽車CO2的排放量穩(wěn)定性好,求x的取值范圍.20.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)任意,恒成立,求的取值范圍.21.(12分)如圖,已知等腰梯形,,為等腰直角三角形,,把沿折起(1)當時,求證:;(2)當平面平面時,求平面與平面所成二面角的平面角的正弦值22.(10分)已知直線l過定點(1)若直線l與直線垂直,求直線l的方程;(2)若直線l在兩坐標軸上的截距相等,求直線l的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)平面向量共線的性質(zhì),結(jié)合拋物線的定義進行求解即可.【詳解】由已知得:,該拋物線的準線方程為:,所以設(shè),因為,所以,由拋物線的定義可知:,故選:B2、B【解析】根據(jù)楊輝三角可得數(shù)列的遞推公式,結(jié)合累加法可得數(shù)列的通項公式與.【詳解】由已知可得數(shù)列的遞推公式為,且,且,故,,,,,等式左右兩邊分別相加得,,故選:B.3、D【解析】求得點A,B的坐標,利用轉(zhuǎn)化為坐標比求解.【詳解】不妨設(shè)直線,由題意得,解得,即;由得,即,因為,所以,所以當時,,;當時,,則,故選:D4、A【解析】先假設(shè)存在這樣的直線,分斜率存在和斜率不存在設(shè)出直線的方程,當斜率k存在時,與雙曲線方程聯(lián)立,消去,得到關(guān)于的一元二次方程,直線與雙曲線相交于兩個不同點,則,,又根據(jù)是線段的中點,則,由此求出與矛盾,故不存在這樣的直線滿足題意;當斜率不存在時,過點的直線不滿足條件,故符合條件的直線不存在.詳解】設(shè)過點的直線方程為或,①當斜率存在時有,得(*)當直線與雙曲線相交于兩個不同點,則必有:,即又方程(*)的兩個不同的根是兩交點、的橫坐標,又為線段的中點,,即,,使但使,因此當時,方程①無實數(shù)解故過點與雙曲線交于兩點、且為線段中點的直線不存在②當時,經(jīng)過點的直線不滿足條件.綜上,符合條件的直線不存在故選:A5、B【解析】對運動方程求導,根據(jù)導數(shù)意義即速度求得在時的導數(shù)值即可.【詳解】由題知,,當時,,即速度為7.故選:B6、A【解析】根據(jù)充分條件和必要條件的定義判斷即可得正確選項.【詳解】若,則,可得,所以,可得,故充分性成立,取,,滿足,但,無意義得不出,故必要性不成立,所以是的充分不必要條件,故選:A.7、B【解析】根據(jù)雙曲線的離心率,求出即可得到結(jié)論【詳解】∵雙曲線的離心率是,∴,即1+,即1,則,即雙曲線的漸近線方程為,故選:B8、C【解析】利用等差數(shù)列的定義和數(shù)列單調(diào)性的定義判斷可得出結(jié)論.【詳解】若,則,即,此時,數(shù)列為單調(diào)遞增數(shù)列,即“”“數(shù)列為單調(diào)遞增數(shù)列”;若等差數(shù)列為單調(diào)遞增數(shù)列,則,即“”“數(shù)列為單調(diào)遞增數(shù)列”.因此,“”是“數(shù)列為單調(diào)遞增數(shù)列”的充分必要條件.故選:C.9、B【解析】由已知可設(shè),則,得,在中求得,再在中,由余弦定理得,從而可求解.【詳解】法一:如圖,由已知可設(shè),則,由橢圓的定義有.在中,由余弦定理推論得.在中,由余弦定理得,解得所求橢圓方程為,故選B法二:由已知可設(shè),則,由橢圓的定義有.在和中,由余弦定理得,又互補,,兩式消去,得,解得.所求橢圓方程為,故選B【點睛】本題考查橢圓標準方程及其簡單性質(zhì),考查數(shù)形結(jié)合思想、轉(zhuǎn)化與化歸的能力,很好的落實了直觀想象、邏輯推理等數(shù)學素養(yǎng)10、B【解析】根據(jù)可得關(guān)于的方程,解方程即可得答案.【詳解】因為可化為,所以,則.故選:B.【點睛】本題考查已知雙曲線的焦距求參數(shù)的值,考查函數(shù)與方程思想,考查運算求解能力,屬于基礎(chǔ)題.11、B【解析】過的直線的斜率存在和不存在兩種情況分別討論即可得出答案.【詳解】易知過點,且斜率不存在的直線為,滿足與拋物線只有一個公共點.當直線的斜率存在時,設(shè)直線方程為,與聯(lián)立得,當時,方程有一個解,即直線與擾物線只有一個公共點.故滿足題意的直線有2條.故選:B12、A【解析】先由列舉法計算出基本事件的總數(shù),然后再求出該同學選到歷史、地理兩門功課的基本事件的個數(shù),基本事件個數(shù)比即為所求概率.【詳解】由題意,記物理、歷史分別為、,從中選擇1門;記思想政治、地理、化學、生物為、、、,從中選擇2門;則該同學隨機選擇3門功課,所包含的基本事件有:,,,,,,,,,,,,共個基本事件;該同學選到歷史、地理兩門功課所包含的基本事件有:,,共個基本事件;該同學選到物理、地理兩門功課的概率為.故選:A.【點睛】本題考查求古典概型的概率,屬于基礎(chǔ)題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)還有一個量詞的命題的否定的方法解答即可.【詳解】命題“x≥1,x2-2x+4≥0”的否定為“”.故答案為:.14、【解析】若Q到的距離為有,由題設(shè)有,結(jié)合雙曲線離心率的性質(zhì),即可求離心率的范圍.【詳解】由題意,,即,整理有,所以或,若Q到的距離為,則Q到左、右焦點的距離分別為、,又Q在C的右支上,所以,則,又,綜上,雙曲線的離心率的取值范圍是.故答案為:【點睛】關(guān)鍵點點睛:若Q到的距離為,根據(jù)給定性質(zhì)有Q到左、右焦點的距離分別為、,再由雙曲線性質(zhì)及已知條件列不等式組求離心率范圍.15、【解析】先求出,然后當時,由,得,兩式相減可求出,再驗證,從而可得數(shù)列為等比數(shù)列,進而可求出,再將問題轉(zhuǎn)化為在上恒成立,所以,從而可求出實數(shù)的取值范圍【詳解】當時,,得,當時,由,得,兩式相減得,得,滿足此式,所以,因為,所以數(shù)列是以為公比,為首項的等比數(shù)列,所以,所以對于任意的,不等式恒成立,可轉(zhuǎn)化為對于任意的,恒成立,即在上恒成立,所以,解得或,所以實數(shù)的取值范圍為故答案為:【點睛】關(guān)鍵點點睛:此題考查數(shù)列通項公的求法,等比數(shù)列求和公式的應(yīng)用,考查不等式恒成立問題,解題的關(guān)鍵是求出數(shù)列的通項公式后求得,再將問題轉(zhuǎn)化為在上恒成立求解即可,考查數(shù)學轉(zhuǎn)化思想,屬于較難題16、【解析】由直線與圓相切,結(jié)合點到直線的距離公式求解即可.【詳解】由直線與圓相切,所以圓心到直線l的距離等于半徑r,即.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)首先將圓的參數(shù)方程華為普通方程,再轉(zhuǎn)化為極坐標方程即可.(2)首先聯(lián)立得到,再求的長度即可.【詳解】(1)將曲線C的參數(shù)方程,(為參數(shù))化為普通方程,得,極坐標方程為.(2)聯(lián)立方程組,消去得,設(shè)點A,B對應(yīng)的極徑分別為,,則,,所以.18、(1);(2)【解析】(1)利用求得遞推關(guān)系得等比數(shù)列,從而得通項公式,再由等差數(shù)列的基本時法求得通項公式;(2)根據(jù)定義求得,然后分組求和法求得和【小問1詳解】由題意,當時,兩式相減,得,即是首項為3,公比為3的等比數(shù)列設(shè)數(shù)列的公差為,小問2詳解】由19、(1),600(2)【解析】用平均數(shù)及方差公式計算即可.用平均值得、之間的關(guān)系,再由,解不等式可得解.【小問1詳解】甲類品牌汽車的排放量的平均值,甲類品牌汽車的排放量的方差.【小問2詳解】由題意知乙類品牌汽車的排放量的平均值=120(g/km),得x+y=220,故y=220-x,所以乙類品牌汽車的排放量的方差,因為乙類品牌汽車比甲類品牌汽車的排放量穩(wěn)定性好,所以,解得.20、(1)的遞增區(qū)間為,遞減區(qū)間為(2)【解析】(1)先求出函數(shù)的導數(shù),令、解出對應(yīng)的解集,結(jié)合定義域即可得到函數(shù)的單調(diào)區(qū)間;(2)將不等式轉(zhuǎn)化為,令,利用導數(shù)討論函數(shù)分別在、時的單調(diào)性,進而求出函數(shù)的最值,即可得出答案.【小問1詳解】函數(shù)的定義域為,又當時,,當時,故的遞增區(qū)間為,遞減區(qū)間為.【小問2詳解】,即,令,有,,若,在上恒成立.則在上為減函數(shù),所以有若,由,可得,則在上增,所以在上存在使得,與題意不符合綜上所述,.21、(1)證明見解析(2)【解析】(1)取的中點E,連,證明四邊形為平行四邊形,從而可得為等邊三角形,四邊形為菱形,從而可證,,即可得平面,再根據(jù)線面垂直的性質(zhì)即可得證;(2)取的中點M,連接,以B為空間坐標原點,向量分別為x,y,z軸建立空間直角坐標系,利用向量法即可得出答案.【小問1詳解】解:取的中點E,連,∵,∴,∵,∴四邊形為平行四邊形,∵,∴,∵,∴為等邊三角形,四邊形為菱形,∴,,∴∴,∵,,,平面,,∴平面,∵平面,∴;【小問2詳解】解:取的中點M,連接,由(1)知,,∵平面平面,,∴平面,以B為空間坐標原點,向量分別

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論