河北省安平縣安平中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
河北省安平縣安平中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
河北省安平縣安平中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
河北省安平縣安平中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
河北省安平縣安平中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

河北省安平縣安平中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,是球的球面上兩點,,為該球面上的動點,若三棱錐體積的最大值為36,則球的表面積為()A. B.C. D.2.函數(shù)在處的切線方程為()A. B.C. D.3.用數(shù)學(xué)歸納法時,從“k到”左邊需增乘的代數(shù)式是()A. B.C. D.4.已知F是雙曲線的右焦點,過F且垂直于x軸的直線交E于A,B兩點,若E的漸近線上恰好存在四個點,,,,使得,則E的離心率的取值范圍是()A. B.C. D.5.已知等比數(shù)列的前n項和為,且滿足公比0<q<1,<0,則下列說法不正確的是()A.一定單調(diào)遞減 B.一定單調(diào)遞增C.式子-≥0恒成立 D.可能滿足=,且k≠16.已知,,則等于()A.2 B.C. D.7.已知橢圓方程為,點在橢圓上,右焦點為F,過原點的直線與橢圓交于A,B兩點,若,則橢圓的方程為()A. B.C. D.8.在空間直角坐標(biāo)系中,已知點,,則線段的中點坐標(biāo)與向量的模長分別是()A.;5 B.;C.; D.;9.若拋物線x2=8y上一點P到焦點的距離為9,則點P的縱坐標(biāo)為()A. B.C.6 D.710.如圖,把橢圓的長軸分成6等份,過每個分點作x軸的垂線交橢圓的上半部分于點,F(xiàn)是橢圓C的右焦點,則()A.20 B.C.36 D.3011.已知斜率為1的直線與橢圓相交于A、B兩點,O為坐標(biāo)原點,AB的中點為P,若直線OP的斜率為,則橢圓C的離心率為()A. B.C. D.12.以原點為對稱中心的橢圓焦點分別在軸,軸,離心率分別為,直線交所得的弦中點分別為,,若,,則直線的斜率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)x,y滿足約束條件則的最大值為________14.已知數(shù)列滿足,,則______.15.已知函數(shù),則函數(shù)在上的最大值為_______16.在中.若成公比為的等比數(shù)列,則____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的離心率為,,分別為橢圓的左,右焦點,為橢圓上一點,的周長為.(1)求橢圓的方程;(2)為圓上任意一點,過作橢圓的兩條切線,切點分別為A,B,判斷是否為定值?若是,求出定值:若不是,說明理由,18.(12分)如圖,在三棱錐中,側(cè)面PBC是邊長為2的等邊三角形,M,N分別為AB,AP的中點.過MN的平面與側(cè)面PBC交于EF(1)求證:;(2)若平面平面ABC,,求直線PB與平面PAC所成角的正弦值19.(12分)已知數(shù)列,若_________________(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和從下列三個條件中任選一個補(bǔ)充在上面的橫線上,然后對題目進(jìn)行求解①;②,,;③,點,在斜率是2的直線上20.(12分)已知橢圓:的長軸長為6,離心率為,長軸的左,右頂點分別為A,B(1)求橢圓的方程;(2)已知過點的直線交橢圓于M、N兩個不同的點,直線AM,AN分別交軸于點S、T,記,(為坐標(biāo)原點),當(dāng)直線的傾斜角為銳角時,求的取值范圍21.(12分)如圖①,等腰梯形中,,分別為的中點,,現(xiàn)將四邊形沿折起,使平面平面,得到如圖②所示的多面體,在圖②中:(1)證明:平面平面;(2)求四棱錐的體積.22.(10分)設(shè)a,b是實數(shù),若橢圓過點,且離心率為.(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)過橢圓E的上頂點P分別作斜率為,的兩條直線與橢圓交于C,D兩點,且,試探究過C,D兩點的直線是否過定點?若過定點,求出定點坐標(biāo);否則,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】當(dāng)平面時,三棱錐體積最大,根據(jù)棱長與球半徑關(guān)系即可求出球半徑,從而求出表面積.【詳解】當(dāng)平面時,三棱錐體積最大.又,則三棱錐體積,解得;故表面積.故選:C.【點睛】關(guān)鍵點點睛:本題考查三棱錐與球的組合體的綜合問題,本題的關(guān)鍵是判斷當(dāng)平面時,三棱錐體積最大.2、C【解析】利用導(dǎo)數(shù)的幾何意義即可求切線方程﹒【詳解】,,,,在處的切線為:,即﹒故選:C﹒3、C【解析】分別求出n=k時左端的表達(dá)式,和n=k+1時左端的表達(dá)式,比較可得“n從k到k+1”左端需增乘的代數(shù)式【詳解】當(dāng)n=k時,左端=(k+1)(k+2)(k+3)…(2k),當(dāng)n=k+1時,左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左邊需增乘的代數(shù)式是故選:C【點睛】本題考查用數(shù)學(xué)歸納法證明等式,分別求出n=k時左端的表達(dá)式和n=k+1時左端的表達(dá)式,是解題的關(guān)鍵4、D【解析】由題意以AB為直徑的圓M與雙曲線E的漸近線有四個不同的交點,則必有,又當(dāng)圓M經(jīng)過原點時此時以AB為直徑的圓M上與雙曲線E的漸近線有三個不同的交點,不滿足,從而得出答案.【詳解】由題意,由得,雙曲線的漸近線方程為所以,由,可知,,,在以AB為直徑的圓M上,圓的半徑為即以AB為直徑的圓M與雙曲線E的漸近線有四個不同的交點當(dāng)圓M與漸近線相切時,圓心到漸近線的距離,則必有,即,則雙曲線E的離心率,所以又當(dāng)圓M經(jīng)過原點時,,解得E的離心率為,此時以AB為直徑圓M與雙曲線E的漸近線有三個不同的交點,不滿足條件.所以E的離心率的取值范圍是.故選:D5、D【解析】根據(jù)等比數(shù)列的通項公式,前n項和的意義,可逐項分析求解.【詳解】因為等比數(shù)列的前n項和為,且滿足公比0<q<1,<0,所以當(dāng)時,由可得,故數(shù)列為增函數(shù),故B正確;由0<q<1,<0知,所以,故一定單調(diào)遞減,故A正確;因為當(dāng)時,,,所以,即-,當(dāng)時,,綜上,故C正確;若=,且k≠1,則,即,因為,故,故矛盾,所以D不正確.故選:D6、D【解析】利用兩角和的正切公式計算出正確答案.【詳解】.故選:D7、A【解析】根據(jù)橢圓的性質(zhì)可得,則橢圓方程可求.【詳解】由點在橢圓上得,由橢圓的對稱性可得,則,故橢圓方程為.故選:A.8、B【解析】根據(jù)給定條件利用中點坐標(biāo)公式及空間向量模長的坐標(biāo)表示計算作答.【詳解】因點,,所以線段的中點坐標(biāo)為,.故選:B9、D【解析】設(shè)出P的縱坐標(biāo),利用拋物線的定義列出方程,求出答案.【詳解】由題意得:拋物線準(zhǔn)線方程為,P點到拋物線的焦點的距離等于到準(zhǔn)線的距離,設(shè)點縱坐標(biāo)為,則,解得:.故選:D10、D【解析】由橢圓的對稱性可知,,代入計算可得答案.【詳解】設(shè)橢圓左焦點為,連接由橢圓的對稱性可知,,所以.故選:D.11、B【解析】這是中點弦問題,注意斜率與橢圓a,b之間的關(guān)系.【詳解】如圖:依題意,假設(shè)斜率為1的直線方程為:,聯(lián)立方程:,解得:,代入得,故P點坐標(biāo)為,由題意,OP的斜率為,即,化簡得:,,,;故選:B.12、A【解析】分類討論直線的斜率存在與不存在兩種情況,聯(lián)立直線與曲線方程,再根據(jù),求解.【詳解】設(shè)橢圓的方程分別為,,由可知,直線的斜率一定存在,故設(shè)直線的方程為.聯(lián)立得,故,;聯(lián)立得,則,.因為,所以,所以.又,所以,所以,所以,.故選:A.【點睛】此題利用設(shè)而不求的方法,找出、、、之間的關(guān)系,化簡即可得到的值.此題的難點在于計算量較大,且容易計算出錯.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】先作出可行域,由,得,作出直線,向下平移過點時,取得最大值,求出點坐標(biāo)代入目標(biāo)函數(shù)中可得答案【詳解】作出可行域如圖(圖中陰影部分),由,得,作出直線,向下平移過點時,取得最大值,由,得,即,所以的最大值為,故答案為:114、1023【解析】由數(shù)列遞推公式求特定項,依次求下去即可解決.【詳解】數(shù)列中,則,,,,,,故答案為:102315、【解析】利用導(dǎo)數(shù)單調(diào)性求出的單調(diào)性,比較極小值與兩端點,的大小求出在上的最大值.【詳解】因為,則,令,即時,函數(shù)單調(diào)遞增.令,即時,函數(shù)單調(diào)遞減.所以的單調(diào)遞減區(qū)間為,的單調(diào)遞增區(qū)間為,所以在上單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)的極小值也是函數(shù)的最小值.,兩端點為,,即最大值為.故答案為:.16、【解析】由條件可得,即,由余弦定理可得答案.【詳解】由成公比為的等比數(shù)列,即由正弦定理可知所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)是;【解析】(1)由離心率和焦點三角形周長可求出,結(jié)合關(guān)系式得出,即可得出橢圓的方程;(2)由平行于軸特殊情況求出,即;當(dāng)平行于軸時,設(shè)過的直線為,聯(lián)立橢圓方程,令化簡得關(guān)于的二次方程,由韋達(dá)定理即可求解.【小問1詳解】由題可知,,解得,又,解得,故橢圓的標(biāo)準(zhǔn)方程為:;【小問2詳解】如圖所示,當(dāng)平行于軸時,恰好平行于軸,,,;當(dāng)不平行于軸時,設(shè),設(shè)過點的直線為,聯(lián)立得,令得,化簡得,設(shè),則,又,故,即.綜上所述,.18、(1)證明見解析(2)【解析】(1)由題意先證明平面PBC,然后由線面平行的性質(zhì)定理可證明.(2)由平面平面ABC,取BC中點O,則平面ABC,可得,由條件可得,以O(shè)坐標(biāo)原點,分別以O(shè)B,AO,OP為x,y,z軸建立空間直角坐標(biāo)系,利用向量法求解即可.【小問1詳解】因為M,N分別為AB,AP的中點,所以,又平面PBC,所以平面PBC,因為平面平面,所以【小問2詳解】因為平面平面ABC,取BC中點O,連接PO,AO,因為是等邊三角形,所以,所以平面ABC,故,又因,所以,以O(shè)為坐標(biāo)原點,分別以O(shè)B,AO,OP為x,y,z軸建立空間直角坐標(biāo)系,可得:,,,,,所以,,,設(shè)平面PAC的法向量為,則,則,令,得,,所以,所以直線PB與平面PAC所成角的正弦值為19、答案見解析.【解析】(1)若選①,根據(jù)通項公式與前項和的關(guān)系求解通項公式即可;若選②,根據(jù)可得數(shù)列為等差數(shù)列,利用基本量法求解通項公式即可;若選③,根據(jù)兩點間的斜率公式可得,可得數(shù)列為等差數(shù)列進(jìn)而求得通項公式;(2)利用裂項相消求和即可【詳解】解:(1)若選①,由,所以當(dāng),,兩式相減可得:,而在中,令可得:,符合上式,故若選②,由(,)可得:數(shù)列為等差數(shù)列,又因為,,所以,即,所以若選③,由點,在斜率是2的直線上得:,即,所以數(shù)列為等差數(shù)列且(2)由(1)知:,所以20、(1)(2)【解析】(1)根據(jù)橢圓的長軸和離心率,可求得,進(jìn)而得橢圓方程;(2)先判斷直線斜率為正,然后設(shè)出直線方程,和橢圓方程聯(lián)立,整理得根與系數(shù)的關(guān)系,利用直線方程求出點S、T的坐標(biāo),再根據(jù)確定的表達(dá)式,將根與系數(shù)的關(guān)系式代入化簡,求得結(jié)果.【小問1詳解】由題意可得:解得:,所以橢圓的方程:【小問2詳解】當(dāng)直線l的傾斜角為銳角時,設(shè),設(shè)直線,由得,從而,又,得,所以,又直線的方程是:,令,解得,所以點S為;直線的方程是:,同理點T為·所以,因為,所以,所以∵,∴,綜上,所以的范圍是21、(1)證明見解析.(2)2【解析】(1)根據(jù)面面平行的判定定理結(jié)合已知條件即可證明;(2)將所求四棱錐的體積轉(zhuǎn)化為求即可.【小問1詳解】證明:因為,面,面,所以面,同理面,又因為面,所以面面.【小問2詳解】解:因為在圖①等腰梯形中,分別為的中點,所以,在圖②多面體中,因為,面,,所以面.因為,面面,面,面面,所以面,又因為面,所以,在直角三角形中,因為,所以,同理,,所以,則,有,所以.所以四棱錐的體積為2.22、(1);(2)過定點,坐標(biāo)為.【解析】(1)根據(jù)橢圓的離心率公式,結(jié)合代入法進(jìn)行求解即可;(2)根據(jù)直線斜率公式和一元二次方程根與系數(shù)的關(guān)系進(jìn)行求解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論