廣東湛江市大成中學2025屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
廣東湛江市大成中學2025屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
廣東湛江市大成中學2025屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
廣東湛江市大成中學2025屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
廣東湛江市大成中學2025屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

廣東湛江市大成中學2025屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在棱長為的正方體中,為線段的中點,為線段的中點,則直線到直線的距離為()A. B.C. D.2.已知拋物線的焦點為,點為拋物線上一點,點,則的最小值為()A. B.2C. D.33.已知函數(shù),當時,函數(shù)在,上均為增函數(shù),則的取值范圍是A. B.C. D.4.如果命題為真命題,為假命題,那么()A.命題,都是真命題 B.命題,都是假命題C.命題,至少有一個是真命題 D.命題,只有一個是真命題5.已知,則點關于平面的對稱點的坐標是()A. B.C. D.6.若拋物線與直線:相交于兩點,則弦的長為()A.6 B.8C. D.7.①直線在軸上的截距為;②直線的傾斜角為;③直線必過定點;④兩條平行直線與間的距離為.以上四個命題中正確的命題個數(shù)為()A. B.C. D.8.設函數(shù)在R上可導,其導函數(shù)為,且函數(shù)的圖像如題(8)圖所示,則下列結論中一定成立的是A.函數(shù)有極大值和極小值B.函數(shù)有極大值和極小值C.函數(shù)有極大值和極小值D.函數(shù)有極大值和極小值9.已知,,若,則()A.9 B.6C.5 D.310.已知直線l:,則下列結論正確的是()A.直線l的傾斜角是B.直線l在x軸上的截距為1C.若直線m:,則D.過與直線l平行的直線方程是11.已知直線在x軸和y軸上的截距相等,則a的值是()A或1 B.或C. D.112.圓心在x軸負半軸上,半徑為4,且與直線相切的圓的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.甲口袋中裝有2個黑球和1個白球,乙口袋中裝有3個白球.現(xiàn)同時從甲、乙兩口袋中各任取一個球交換放入對方口袋,共進行了2次這樣的操作后,甲口袋中恰有2個黑球的概率為__________________.14.過點作圓的切線,則切線的方程為________15.曲線在點M(π,0)處的切線方程為________16.如圖,在長方體ABCD﹣A'B'C'D'中,點P,Q分別是棱BC,CD上的動點,BC=4,CD=3,CC'=2,直線CC'與平面PQC'所成的角為30°,則△PQC'的面積的最小值是__三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知;對任意的恒成立.(1)若是真命題,求m的取值范圍;(2)若是假命題,是真命題,求m的取值范圍.18.(12分)在實驗室中,研究某種動物是否患有某種傳染疾病,需要對其血液進行檢驗.現(xiàn)有份血液樣本,有以下兩種檢驗方式:一是逐份檢驗,則需要檢驗n次;二是混合檢驗,將其中k(且)份血液樣本分別取樣混合在一起檢驗,如果檢驗結果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了;如果檢驗結果為陽性,為了明確這k份究竟哪些為陽性,就需要對它們再次取樣逐份檢驗,那么這k份血液的檢驗次數(shù)共為次.假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的.且每份樣本是陽性結果的概率為(1)假設有5份血液樣本,其中只有2份血液樣本為陽性,若采用逐份檢驗方式,求恰好經(jīng)過3次檢驗就能把陽性樣本全部檢測出來的概率;(2)假設有4份血液樣本,現(xiàn)有以下兩種方案:方案一:4個樣本混合在一起檢驗;方案二:4個樣本平均分為兩組,分別混合在一起檢驗若檢驗次數(shù)的期望值越小,則方案越優(yōu)現(xiàn)將該4份血液樣本進行檢驗,試比較以上兩個方案中哪個更優(yōu)?19.(12分)已知拋物線,過焦點的直線l交拋物線C于M、N兩點,且線段中點的縱坐標為2(1)求直線l的方程;(2)設x軸上關于y軸對稱的兩點P、Q,(其中P在Q的右側),過P的任意一條直線交拋物線C于A、B兩點,求證:始終被x軸平分20.(12分)已知橢圓()與橢圓的焦點相同,且橢圓C過點(1)求橢圓C的方程;(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓C恒有兩個交點A,B,且,(O為坐標原點),若存在,求出該圓的方程;若不存在,說明理由;(3)P是橢圓C上異于上頂點,下頂點的任一點,直線,,分別交x軸于點N,M,若直線OT與過點M,N的圓G相切,切點為T.證明:線段OT的長為定值,并求出該定值21.(12分)如圖,已知四邊形中,,,,且,求四邊形的面積22.(10分)已知橢圓的左、右焦點分別為,,橢圓上一點滿足,且的面積為(1)求橢圓的方程;(2)直線與橢圓有且只有一個公共點,過點作直線的垂線.設直線交軸于,交軸于,且點,求的軌跡方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】連接,,,,在平面中,作,為垂足,將兩平行線的距離轉化成點到直線的距離,結合余弦定理即同角三角函數(shù)基本關系,求得,因此可得,進而可得直線到直線的距離;【詳解】解:如圖,連接,,,,在平面中,作,為垂足,因為,分別為,的中點,因為,,所以,所以,同理,所以四邊形是平行四邊形,所以,所以即為直線到直線的距離,在三角形中,由余弦定理得因為,所以是銳角,所以,在直角三角形中,,故直線到直線的距離為;故選:C2、D【解析】求出拋物線C的準線l的方程,過A作l的垂線段,結合幾何意義及拋物線定義即可得解.【詳解】拋物線的準線l:,顯然點A在拋物線C內(nèi),過A作AM⊥l于M,交拋物線C于P,如圖,在拋物線C上任取不同于點P的點,過作于點N,連PF,AN,,由拋物線定義知,,于是得,即點P是過A作準線l的垂線與拋物線C的交點時,取最小值,所以的最小值為3.故選:D3、A【解析】由,函數(shù)在上均為增函數(shù),恒成立,,設,則,又設,則滿足線性約束條件,畫出可行域如圖所示,由圖象可知在點取最大值為,在點取最小值.則的取值范圍是,故答案選A考點:利用導數(shù)研究函數(shù)的性質(zhì),簡單的線性規(guī)劃4、D【解析】由命題為真命題,可判斷二者至少有一個為真命題,由為假命題,可判斷二者至少有一個為假命題,由此可得答案.【詳解】命題為真命題,說明二者至少有一個為真命題,為假命題,說明二者至少有一個為假命題,綜合上述,可知命題,只有一個是真命題,故選:D5、C【解析】根據(jù)對稱性求得坐標即可.【詳解】點關于平面的對稱點的坐標是,故選:C6、B【解析】由題得拋物線的焦點坐標為剛好在直線上,再聯(lián)立直線和拋物線的方程,利用韋達定理和拋物線的定義求解.【詳解】解:由題得.由題得拋物線的焦點坐標為剛好在直線上,設,聯(lián)立直線和拋物線方程得,所以.所以.故選:B7、B【解析】由直線方程的性質(zhì)依次判斷各命題即可得出結果.【詳解】對于①,直線,令,則,直線在軸上的截距為-,則①錯誤;對于②,直線的斜率為,傾斜角為,則②正確;對于③直線,由點斜式方程可知直線必過定點,則③正確;對于④,兩條平行直線與間的距離為,則④錯誤.故選:B.8、D【解析】則函數(shù)增;則函數(shù)減;則函數(shù)減;則函數(shù)增;選D.【考點定位】判斷函數(shù)的單調(diào)性一般利用導函數(shù)的符號,當導函數(shù)大于0則函數(shù)遞增,當導函數(shù)小于0則函數(shù)遞減9、D【解析】根據(jù)空間向量垂直的坐標表示即可求解.【詳解】.故選:D.10、D【解析】A.將直線方程的一般式化為斜截式可得;B.令y=0可得;C.求出直線m斜率即可判斷;D.設要求直線的方程為,將代入即可.【詳解】根據(jù)題意,依次分析選項:對于A,直線l:,即,其斜率,則傾斜角是,A錯誤;對于B,直線l:,令y=0,可得,l在x軸上的截距為,B錯誤;對于C,直線m:,其斜率,,故直線m與直線l不垂直,C錯誤;對于D,設要求直線的方程為,將代入,可得t=0,即要求直線為,D正確;故選:D11、A【解析】分截距都為零和都不為零討論即可.【詳解】當截距都為零時,直線過原點,;當截距不為零時,,.綜上:或.故選:A.12、A【解析】根據(jù)題意,設圓心為坐標為,,由直線與圓相切的判斷方法可得圓心到直線的距離,解得的值,即可得答案【詳解】根據(jù)題意,設圓心為坐標為,,圓的半徑為4,且與直線相切,則圓心到直線的距離,解得:或13(舍,則圓的坐標為,故所求圓的方程為,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分兩類:兩次都互相交換白球的概率和第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率求和可得答案.【詳解】分兩類:①兩次都互相交換白球的概率為;②第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率為.故答案為:.14、【解析】由已知可得點M在圓C上,則過M作圓的切線與CM所在的直線垂直,求出斜率,進而可得直線方程.【詳解】由圓得到圓心C的坐標為(0,

0),圓的半徑,而所以點M在圓C上,則過M作圓的切線與CM所在的直線垂直,又,得到CM所在直線的斜率為,所以切線的斜率為,則切線方程為:即故答案為:.15、【解析】由題意可得,據(jù)此可得切線的斜率,結合切點坐標即可確定切線方程.【詳解】由函數(shù)的解析式可得:,所求切線的斜率為:,由于切點坐標為,故切線方程為:.【點睛】導數(shù)運算及切線的理解應注意的問題一是利用公式求導時要特別注意除法公式中分子的符號,防止與乘法公式混淆二是直線與曲線公共點的個數(shù)不是切線的本質(zhì),直線與曲線只有一個公共點,直線不一定是曲線的切線,同樣,直線是曲線的切線,則直線與曲線可能有兩個或兩個以上的公共點三是復合函數(shù)求導的關鍵是分清函數(shù)的結構形式.由外向內(nèi)逐層求導,其導數(shù)為兩層導數(shù)之積.16、8【解析】設三棱錐C﹣C′PQ的高為h,CQ=x,CP=y(tǒng),由體積法求得的關系,由直線CC’與平面C’PQ成的角為30°,得到xy≥8,再由VC﹣C′PQ=VC′﹣CPQ,能求出△PQC'的面積的最小值【詳解】解:設三棱錐C﹣C′PQ的高為h,CQ=x,CP=y(tǒng),由長方體性質(zhì)知兩兩垂直,所以,,,,,所以,由得,所以,∵直線CC’與平面C’PQ成的角為30°,∴h=2,∴,,∴xy≥8,再由體積可知:VC﹣C′PQ=VC′﹣CPQ,得,S△C′PQ=xy,∴△PQC'的面積的最小值是8故答案為:8三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)為真命題,則都為真命題,求出為真命題時的m的取值范圍,并求交集,即為結果;(2)若是假命題,是真命題,則一真一假,分兩種情況進行求解,最后求并集即為結果.【小問1詳解】由題意得:為真命題,則要滿足,解得:,對任意的恒成立,結合開口向上,所以要滿足:,解得:,要保證是真命題,則與取交集,結果為【小問2詳解】是假命題,是真命題,則一真一假,結合(1)中所求,當真假時,與取交集,結果為;當假真時,與取交集,結果為,綜上:m的取值范圍是.18、(1)(2)方案一更優(yōu)【解析】(1)分兩類,由古典概型可得;(2)分別求出兩種方案的數(shù)學期望,然后比較可知.【小問1詳解】恰好經(jīng)過3次檢驗就能把陽性樣本全部檢測出來分為兩種情況:第一種:前兩次檢測中出現(xiàn)一次陽性一次陰性且第三次為陽性第二種:前三次檢測均陰性,所以概率為【小問2詳解】方案一:混在一起檢驗,記檢驗次數(shù)為X,則X的取值范圍是,,,方案二:每組的兩個樣本混合在一起檢驗,若結果呈陰性,則檢驗次數(shù)為1,其概率為,若結果呈陽性,則檢驗次數(shù)為3,其概率為設檢驗次數(shù)為隨機變量Y,則Y的取值范圍是,,,,,所以,方案一更優(yōu)19、(1);(2)證明見解析.【解析】(1)設直線l的方程為:,聯(lián)立方程,利用韋達定理可得結果;(2)設,借助韋達定理表示,即可得到結果.【詳解】(1)由已知可設直線l的方程為:,聯(lián)立方程組可得,設,則又因為,得,故直線l的方程為:即為;(2)由題意可設,可設過P的直線為聯(lián)立方程組可得,顯然設,則所以所以始終被x軸平分20、(1);(2)存在,;(3)證明見解析,定值2【解析】(1)根據(jù)已知條件,用待定系數(shù)解方程組即可得到C的方程;(2)設出AB的方程,與橢圓方程聯(lián)立,得到根與系數(shù)關系,代入由確定方程內(nèi)即可得到結果;(3)設P點坐標,求出M和N坐標,設出圓G的圓心坐標,求得圓的半徑,由垂徑定理求得切線長|OT|,結合P在橢圓上可證|OT|為定值﹒【小問1詳解】設橢圓C的方程為將點代入橢圓方程有點解得,(舍)∴橢圓的方程為;【小問2詳解】設,當AB斜率存在時,設,代入,整理得,由得,即,由韋達定理化簡得,即,設存在圓與直線相切,則,解得,∴圓的方程為;又若AB斜率不存在時,檢驗知滿足條件,故存在圓心在原點的圓符合題意;【小問3詳解】如圖:,,設,直線,令,得;直線,令,得;解法一:設圓G的圓心為,則,,,而,∴,∴,∴,即線段OT長度為定值2解法二:,而,∴,∴由切割線定理得.∴,即線段OT的長度為定值221、.【解析】在中由余弦定理可得,在中,由余弦定理可得,再利用四邊形的面積,結合三角形面積公式可得答案.【詳解】在中,由,,,可得在中,由,,,可得又,故.所以四邊形的面積=【點睛】本題主要考查余弦定理解三角形,考查了三角形面積公式的應用,屬于中檔題.2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論