版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆全國百強校】山西大學附屬中學高一數(shù)學第一學期期末調(diào)研試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)(,),若的圖像的任何一條對稱軸與x軸交點的橫坐標均不屬于區(qū)間,則的取值范圍是()A. B.C. D.2.若直線與圓交于兩點,關于直線對稱,則實數(shù)的值為()A. B.C. D.3.計算(16A.-1 B.1C.-3 D.34.如圖,在正方體中,與平面所成角的余弦值是A. B.C. D.5.如果,且,那么下列命題中正確的是()A.若,則 B.若,則C.若,則 D.若,則6.對于函數(shù)的圖象,關于直線對稱;關于點對稱;可看作是把的圖象向左平移個單位而得到;可看作是把的圖象上所有點的縱坐標不變,橫坐標縮短到原來的倍而得到以上敘述正確的個數(shù)是A.1個 B.2個C.3個 D.4個7.函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的部分圖象如圖所示,則函數(shù)f(x)的解析式為()A. B.C. D.8.已知函數(shù)函數(shù)有四個不同的零點,,,,且,則()A.1 B.2C.-1 D.9.若函數(shù)的圖像向左平移個單位得到的圖像,則A. B.C. D.10.直線與直線互相垂直,則這兩條直線的交點坐標為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設函數(shù),則__________12.空間直角坐標系中,點A(﹣1,0,1)到原點O的距離為_____13.在棱長為2的正方體ABCD-中,E,F(xiàn),G,H分別為棱,,,的中點,將該正方體挖去兩個大小完全相同的四分之一圓錐,得到如圖所示的幾何體,現(xiàn)有下列四個結論:①CG//平面ADE;②該幾何體的上底面的周長為;③該幾何體的的體積為;④三棱錐F-ABC的外接球的表面積為其中所有正確結論的序號是____________14.若將函數(shù)的圖像向左平移個單位后所得圖像關于軸對稱,則的最小值為___________.15.一個棱長為2cm的正方體的頂點都在球面上,則球的體積為_______cm3.16.若,則的終邊所在的象限為______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知二次函數(shù)滿足:,且該函數(shù)的最小值為1.(1)求此二次函數(shù)的解析式;(2)若函數(shù)的定義域為(其中),問是否存在這樣的兩個實數(shù)m,n,使得函數(shù)的值域也為A?若存在,求出m,n的值;若不存在,請說明理由.18.定義在(-1,1)上的奇函數(shù)為減函數(shù),且,求實數(shù)a的取值范圍.19.定義在D上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界已知函數(shù)當,求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;若函數(shù)在上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍20.已知函數(shù)(1)當時,求的取值范圍;(2)若關于x的方程在區(qū)間上恰有兩個不同的實數(shù)根,求實數(shù)m的取值范圍21.已知函數(shù)(1)判斷并說明函數(shù)的奇偶性;(2)若關于的不等式恒成立,求實數(shù)的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由已知得,,且,解之討論k,可得選項.【詳解】因為的圖像的任何一條對稱軸與x軸交點的橫坐標均不屬于區(qū)間,所以,所以,故排除A,B;又,且,解得,當時,不滿足,當時,符合題意,當時,符合題意,當時,不滿足,故C正確,D不正確,故選:C.【點睛】關鍵點睛:本題考查根據(jù)正弦型函數(shù)的對稱性求得參數(shù)的范圍,解決問題的關鍵在于運用整體代換的思想,建立關于的不等式組,解之討論可得選項.2、A【解析】所以直線過圓的圓心,圓的圓心為,,解得.故選A.【點睛】本題給出直線與圓相交,且兩個交點關于已知直線對稱,求參數(shù)的值.著重考查了直線與圓的位置關系等知識,屬于基礎題.3、B【解析】原式=故選B4、D【解析】連接,設正方體棱長為1.∵平面,∴∠為與平面所成角.∴故選D5、D【解析】根據(jù)不等式的性質(zhì)逐項分析判斷即可.【詳解】對于A,若,,滿足,但不成立,錯誤;對于B,若,則,錯誤;對于C,若,,滿足,但不成立,錯誤;對于D,由指數(shù)函數(shù)的單調(diào)性知,正確.故選:D.6、B【解析】由判斷;由判斷;由的圖象向左平移個單位,得到的圖象判斷;由的圖象上所有點的縱坐標不變,橫坐標縮短到原來的倍,得到函數(shù)的圖象判斷.【詳解】對于函數(shù)的圖象,令,求得,不是最值,故不正確;令,求得,可得的圖象關于點對稱,故正確;把的圖象向左平移個單位,得到的圖象,故不正確;把的圖象上所有點的縱坐標不變,橫坐標縮短到原來的倍,得到函數(shù)的圖象,故正確,故選B【點睛】本題通過對多個命題真假的判斷,綜合考查三角函數(shù)的對稱性以及三角函數(shù)的圖象的變換規(guī)律,屬于中檔題.這種題型綜合性較強,也是高考的命題熱點,同學們往往因為某一處知識點掌握不好而導致“全盤皆輸”,因此做這類題目更要細心、多讀題,盡量挖掘出題目中的隱含條件,另外,要注意從簡單的自己已經(jīng)掌握的知識點入手,然后集中精力突破較難的命題.7、A【解析】由圖觀察出和后代入最高點,利用可得,進而得到解析式【詳解】解:由圖可知:,,,,代入點,得,,,,,,故選.【點睛】本題考查了由的部分圖象確定其表達式,屬基礎題.8、D【解析】將問題轉化為兩個函數(shù)圖象的交點問題,然后結合圖象即可解答.【詳解】有四個不同的零點,,,,即方程有四個不同的解的圖象如圖所示,由二次函數(shù)的對稱性,可得.因為,所以,故故選:D9、A【解析】函數(shù)的圖象向左平移個單位,得到的圖象對應的函數(shù)為:本題選擇A選項.10、B【解析】時,直線分別化為:,此時兩條直線不垂直.時,利用兩條直線垂直可得:,解得.聯(lián)立方程解出即可得出.【詳解】時,直線分別化為:,此時兩條直線不垂直.時,由兩條直線垂直可得:,解得.綜上可得:.聯(lián)立,解得,.∴這兩條直線的交點坐標為.故選:【點睛】本題考查了直線相互垂直、分類討論方法、方程的解法,考查了推理能力與計算能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】先根據(jù)2的范圍確定表達式,求出;后再根據(jù)的范圍確定表達式,求出.【詳解】因為,所以,所以.【點睛】分段函數(shù)求值問題,要先根據(jù)自變量的范圍,確定表達式,然后代入求值.要注意由內(nèi)而外求值,屬于基礎題.12、【解析】由空間兩點的距離公式計算可得所求值.【詳解】點到原點的距離為,故答案為:.【點睛】本題考查空間兩點的距離公式的運用,考查運算能力,是一道基礎題.13、①③④【解析】由面面平行的性質(zhì)判斷①;由題設知兩段圓弧的長度之和為,即可得上底周長判斷②;利用正方體體積及圓錐體積的求法求幾何體體積判斷③;首先確定外接球球心位置,進而求出球體的半徑,即可得F-ABC的外接球的表面積判斷④.【詳解】因為面面,面,所以CG//平面,即CG//平面ADE,①正確;依題意知,弧EF與弧HG均為圓弧,且這兩段圓弧的長度之和為,所以該幾何體的上底面的周長為,該幾何體的體積為8-,②錯誤,③正確;設M,N分別為下底面、上底面的中心,則三棱錐F-ABC的外接球的球心O在MN上設OM=h,則,解得,從而球O的表面積為,④正確.故答案為:①③④14、【解析】利用輔助角公式將函數(shù)化簡,再根據(jù)三角函數(shù)的平移變換及余弦函數(shù)的性質(zhì)計算可得;【詳解】解:因,將的圖像向左平移個單位,得到,又關于軸對稱,所以,,所以,所以當時取最小值;故答案為:15、【解析】因為一個正方體的頂點都在球面上,它的棱長為2,所以正方體的外接球的直徑就是正方體的對角線的長度:2所以球的半徑為:所求球的體積為=故答案為:16、第一或第三象限【解析】將表達式化簡,,二者相等,只需滿足與同號即可,從而判斷角所在的象限.【詳解】由,,若,只需滿足,即與同號,因此的終邊在第一或第三象限.故答案為:第一或第三象限.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,,.【解析】(1)設,由,求出值,可得二次函數(shù)的解析式;(2)分①當時,②當時,③當時,三種情況討論,可得存在滿足條件的,,其中,【詳解】解:(1)依題意,可設,因,代入得,所以.(2)假設存在這樣m,n,分類討論如下:當時,依題意,即兩式相減,整理得,代入進一步得,產(chǎn)生矛盾,故舍去;當時,依題意,若,,解得或(舍去);若,,產(chǎn)生矛盾,故舍去;當時,依題意,即解得,產(chǎn)生矛盾,故舍去綜上:存在滿足條件的m,n,其中,18、【解析】結合奇函數(shù)性質(zhì)以及單調(diào)性,去掉外層函數(shù),變成一元二次不等式進行求解.【詳解】由題即根據(jù)奇函數(shù)定義可知原不等式為又因為單調(diào)遞減函數(shù),故,解得或又因為函數(shù)定義域為故,解得,所以綜上得的范圍為.19、(1)值域為(3,+∞);不是有界函數(shù),詳見解析(2)【解析】(1)當a=1時,f(x)=1+因為f(x)在(-∞,0)上遞減,所以f(x)>f(0)=3,即f(x)在(-∞,0)的值域為(3,+∞),故不存在常數(shù)M>0,使|f(x)|≤M成立,所以函數(shù)f(x)在(-∞,0)上不是有界函數(shù).(2)由題意知,|f(x)|≤3在[0,+∞)上恒成立.-3≤f(x)≤3,-4-≤a·≤2-,所以-4·2x-≤a≤2·2x-在[0,+∞)上恒成立.所以≤a≤,設2x=t,h(t)=-4t-,p(t)=2t-,由x∈[0,+∞)得t≥1,設1≤t1<t2,h(t1)-h(huán)(t2)=>0,p(t1)-p(t2)=<0,所以h(t)在[1,+∞)上遞減,p(t)在[1,+∞)上遞增,h(t)在[1,+∞)上的最大值為h(1)=-5,p(t)在[1,+∞)上的最小值為p(1)=1,所以實數(shù)a的取值范圍為[-5,1]20、(1)(2)【解析】(1)首先利用三角恒等變換公式化簡函數(shù)解析式,再根據(jù)的取值范圍,求出的取值范圍,最后根據(jù)正弦函數(shù)的性質(zhì)計算可得;(2)依題意可得,再由(1)及正弦函數(shù)的性質(zhì)計算可得;【小問1詳解】解:因為即∵,∴,∴,∴,故的取值范圍為【小問2詳解】解:∵,∴由(1)知,∵有兩個不同的實數(shù)根,因為在上單調(diào)遞增,在上單調(diào)遞減,且當時,由正弦函數(shù)圖象可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021-2022 -2 形勢與政策學習通超星期末考試答案章節(jié)答案2024年
- 河北省邯鄲市九校2025屆數(shù)學高一上期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析
- 2025屆湖北省孝感市安陸市第一中學數(shù)學高一上期末考試試題含解析
- 2024年房屋買賣合同欺詐
- 2025屆深圳大學師范學院附屬中學高三數(shù)學第一學期期末考試試題含解析
- 2024年工業(yè)產(chǎn)品買賣合同
- 2024年就業(yè)安置勞動合同
- 湖南省衡陽縣第三中學2025屆高二生物第一學期期末統(tǒng)考模擬試題含解析
- 2025屆新疆兵地六校高一上數(shù)學期末考試試題含解析
- 2025屆深圳市龍文一對一高一數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析
- 衛(wèi)生系統(tǒng)突發(fā)公共衛(wèi)生事件應急演練方案
- 北師大版小學數(shù)學三年級上冊第二單元《觀察物體-看一看(一)》教學設計(公開課教案及學習任務單)
- 合作賣土地合同模板
- 大一統(tǒng)王朝的鞏固 課件 2024-2025學年統(tǒng)編版七年級歷史上冊
- 2024變電站無人機巡檢系統(tǒng)規(guī)范第1部分:技術規(guī)范
- 2024-2024部編版九年級語文上冊期末考試測試卷(附答案)
- 2024-2025學年八年級生物上冊第一學期 期末綜合模擬測試卷( 人教版)
- 綠色課程:農(nóng)村幼兒園教育質(zhì)量提升的有效探索
- 【課件】2025屆高三生物一輪復習備考策略研討
- 銀行股份有限公司同城票據(jù)交換業(yè)務操作規(guī)程(試行)
- 2024年新高考Ⅰ卷、Ⅱ卷、甲卷詩歌鑒賞試題講評課件
評論
0/150
提交評論