最短路徑問題課件講義_第1頁
最短路徑問題課件講義_第2頁
最短路徑問題課件講義_第3頁
最短路徑問題課件講義_第4頁
最短路徑問題課件講義_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

最短路徑問題課件講義八年級上冊13.4

課題學(xué)習(xí)最短路徑問題問題1如圖,要在燃?xì)夤艿繪上修建一個泵站,分別向A、B兩鎮(zhèn)供氣,泵站修在管道的什么地方,可使所用的輸氣管線最短?P所以泵站建在點P

可使輸氣管線最短1、兩點之間,線段最短。2、三角形兩邊之和大于第三邊問題2牧馬人從A地出發(fā),到一條筆直的河邊l飲馬,然后到B地。牧馬人到河邊什么地方飲馬,可使所走過的路徑最短?探索新知BAl轉(zhuǎn)化為數(shù)學(xué)問題B··Al·C當(dāng)C點在直線l的什么位置時,AC+CB的和最?。柯?lián)想問題1的解決方法B··Al·Cl·CB··A思考:

能把A、B兩點轉(zhuǎn)化到直線l的異側(cè)嗎?B··Al·C分析:1、做點B關(guān)于直線l的對稱點B′,連接CB′B′2、AC+CB=AC+CB′,如果AC+CB′的和最小,那么AC+CB的和就最小作法:(1)作點B關(guān)于直線l的對稱點B′;(2)連接AB′,與直線l相交于點C.則點C即為所求.探索新知問題2

如圖,點A,B在直線l的同側(cè),點C是直線上的一個動點,當(dāng)點C在l的什么位置時,AC與CB的和最???B·lA·B′C探索新知問題3

你能用所學(xué)的知識證明AC+BC最短嗎?B·lA·B′C證明:如圖,在直線l上任取一點C′(與點C不重合),連接AC′,BC′,B′C′.由軸對稱的性質(zhì)知,

BC=B′C,BC′=B′C′.∴AC+BC

=AC+B′C=AB′,AC′+BC′

=AC′+B′C′.探索新知問題3

你能用所學(xué)的知識證明AC+BC最短嗎?B·lA·B′CC′探索新知問題3

你能用所學(xué)的知識證明AC+BC最短嗎?B·lA·B′CC′證明:在△AB′C′中,

AB′<AC′+B′C′,∴AC+BC<AC′+BC′.即AC+BC最短.若直線l上任意一點(與點C不重合)與A,B兩點的距離和都大于AC+BC,就說明AC+BC最小.探索新知B·lA·B′CC′追問1證明AC+BC最短時,為什么要在直線l上任取一點C′(與點C不重合),證明AC+BC<AC′+BC′?這里的“C′”的作用是什么?探索新知追問2回顧前面的探究過程,我們是通過怎樣的過程、借助什么解決問題的?B·lA·B′CC′運用新知練習(xí)如圖,一個旅游船從大橋AB的P處前往山腳下的Q處接游客,然后將游客送往河岸BC上,再返回P處,請畫出旅游船的最短路徑.ABCPQ山河岸大橋運用新知基本思路:由于兩點之間線段最短,所以首先可連接PQ,線段PQ為旅游船最短路徑中的必經(jīng)線路.將河岸抽象為一條直線BC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論