數(shù)據(jù)中心、電信和企業(yè)網(wǎng)絡(luò)中高速以太網(wǎng)的未來(lái)_第1頁(yè)
數(shù)據(jù)中心、電信和企業(yè)網(wǎng)絡(luò)中高速以太網(wǎng)的未來(lái)_第2頁(yè)
數(shù)據(jù)中心、電信和企業(yè)網(wǎng)絡(luò)中高速以太網(wǎng)的未來(lái)_第3頁(yè)
數(shù)據(jù)中心、電信和企業(yè)網(wǎng)絡(luò)中高速以太網(wǎng)的未來(lái)_第4頁(yè)
數(shù)據(jù)中心、電信和企業(yè)網(wǎng)絡(luò)中高速以太網(wǎng)的未來(lái)_第5頁(yè)
已閱讀5頁(yè),還剩50頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

ASPIRENTIMPACTREPORT

When

Worlds

Converge

TheFutureofHigh-SpeedEthernetacross

DataCenter,Telecom,andEnterpriseNetworking

ASPIRENTIMPACTREPORT

ConvergingonANewEraof

HIGH-SPEEDEthernet

Newopportunity,unprecedenteddemand,andurgentinnovationaredefiningEthernet’smostconsequentialtransformationindecades.

Wearepleasedtointroduceourfirstannualimpactreporttrackingthelatesttrends,demand,anddevelopmentsshapingthedatacenternetworkingandhigh-speedEthernet(HSE)market.

WithmorethantwodecadesofEthernettestingexperiencewithglobalstakeholders,ourbreakthroughworkspansdealswithpubliccloudhyperscalers,datacenterproviders,serviceproviders,enterprises,governmentandmilitary,networkequipmentproviders,andchipsetOEMsglobally.

Ourinsightsandpredictionsarebasedonvaluableperspectivesfromthedeals,strategies,andinnovations

shapingthehigh-speedEthernetmarket.Thisincludesthe340HSEcustomerengagementsSpirent

supportedaroundtheworldin2023,withmorethan25%ofthosebeing400Gand800Gengagements.

AIAdvancementsMeanMoreEthernet,Everywhere

AsalleyesfocusonthepowerandpromiseofAI,therehasperhapsneverbeenmorepressuretomovefaster,pushtheboundariesofspeed,andrelentlesslypursueeverycompetitiveedgeavailableinthismarket.

Traditionalnorth-southtrafficdatacenterstrategiesarequicklygivingwaytoeast-westapproachesaimedatservingadrasticallyexpandingmarketbase.Stakeholdersare

takingnewpathsandtraversingunproventerraininanattempttosqueezemorecapacityoutofexistingtechnologiesforincreasedperformance.Today,therateofchangeisoutpacing

theabilityofstandardstokeepup.Enterprisesarenotwaitingonfuturedevelopmentstomakeprogressandtelecomoperatorsarethrowingouttraditionalplaybookstomeet

customerswheretheyareinambitiousdeploymentcycles.

InSpirent’sinauguralreportcoveringthisdynamicmarket,weproudlypresentacomprehensivelookatkeydrivers,marketimpacts,andourpredictionsforwhatcomesnext.

AniketKhosla,VicePresidentofWirelineProductManagement,Spirent

2

What’sInside

High-SpeedEthernetMarketMomentum4

DataCenterandAINetworkingEvolution6

DataCenterNetworkingMarketInsights13

TelecomServiceProviderWirelineNetworking18

EnterpriseWirelineNetworking22

High-SpeedEthernetMarketEvolution25

AboutSpirent26

High-SpeedEthernetMarketMomentum

High-SpeedEthernetMarketUpdate

Portspeedsarecontinuingtoevolve,andadoptionremainsstrongacrossalllevelsofspeed,witheven10Gand25GstillexperiencingsteadydemandamongSMEsand5Gcellsitedeployments.Aheadoftraditionaldemandcurves,marketsarealreadylookingto1.6TEthernettopursueAI-drivenopportunitiesassoonasnextyear.(Ourcompanionreport,

TurningIdeasintoActionfor1.6TEthernet

”detailsthecurrentstateofthisdynamicallyevolvingecosystem.)

Steadydemanddriven

bylong-tailofSEM’s

andby5Gcellsite

deployments

Continueddemand

drivenbyservice

provideredge

networksandmedium

sizedenterprises

Wavesofgrowth

initiallybyhyperscalers

refreshcyclesthen

largeenterprises,

tier-2andtier-3cloud

serviceproviders

&largeTelco

serviceproviders(IPCoreupgrades)

Growthdriveninitiallybyhyperscalers

supportforAI

Earlydemanddrivenby

hyperscalersgrowing

supportforAI

70+

MILLION

HSEports

shippedin2023

10/25

100

400

800

1.6TE

withvolumeexpectedtoexplodeto

>90M

portsest.toshipbetween2024-2026

>65M

portsest.toshipbetween2024-2026

>40M

portsest.toshipbetween2024-2026

>42M

portsest.toshipbetween2024-2026

>8.5M

portsest.toshipbetween2025-2026

240+

MILLION

portsshippedbetween

2024and2026.

Source:Dell’OroGroup

Source:EthernetAlliance

ASPIRENTIMPACTREPORT

4

CASPIRENTIMPACTREPORT

800

Initialdeploymentswill

beledbyhyperscalers

tosupportAIindata

centerswithavailabilityof51.2Tbpsswitches.800Goffershigherbandwidth,lowerlatency,enhancedenergyefficiency,and

moreconnections,future-proofingdatacenter

interconnectsforyears.

400

Adoptionis

shiftingfromcloud

hyperscalerstolarge

enterprises,tier-two

andtier-threecloud

providers,andlarge

telcosforIPcore

upgrades.Large

enterprisesview400G

asfuture-proof,offeringasimplerpathto800Gandhighertransmissionratesatlowercosts.

Ethernet

forAIandHPC

GrowingdemandforstandardizedEthernet-basedIPnetworks

forAIandHPCis

initiallyfocusedon

RDMAoverConvergedEthernet(RoCEv2)

andexpectedtoevolvetowardsthenewUltraEthernetTransport

(UET)standard.

Networking

Ethernetfor

TechnologyMaturity

GROWING

RoCEv2Ultra

EthernetTransport

10G

51.2Tswitch

MATURE

siliconSerDes

Automotive

Ethernet

Enterprise&

CentralDataCenter

AI/HPCnetworking

10/25GCellSite

EMERGING

400G

800G

1.6T

1.6TEthernet

Projectedexponential

growthindatacenter

trafficisdriving1.6T

Ethernetresearch.

AlthoughIEEE802.3dj

finalizesin2026,2024

baselinefeaturesenableearlydevelopment

ofsilicon,opticalcomponents,andtransceivers.

5

CASPIRENTIMPACTREPORT

DataCenterand

AINetworkingEvolution

Harshclimates.Hundredsoffeetunderthesea.Isthereanywherecompetitiveindustrieswon’tgoinpursuit

ofunprecedentedperformanceandefficiency?

Datacentersrepresentthekeymarketforadvanced

high-speedEthernet(HSE)solutions,drivenbytheneedtosupportburgeoningAItrafficandnetworkingdemands.

AI’sinfluencecannotbeoverstatedasitradicallytransformsdatacentersandinterconnects,surpassingtheimpactof

traditionalcloudapplications.

Thepressuretomeetsurgingdemandisrealforhyperscalers.Injustafewyears,largelanguagemodelsaregrowingfrom175billiondenseparametersinOpenAI’sGTP-3tonow

trillions(GTP-4hasanestimated1.76trillion).Clustersizesaregrowingbyafactoroffoureverytwoyears.Networkbandwidthisreachingmorethan1Tbpsperaccelerator.

6

CASPIRENTIMPACTREPORT

Metaisacquiring350,000GPUstobuildouttheir

clusters,withtheirnewLlama3trainingclusterhosting24,576GPUs.Thatequatesto16GPUsperrackwith

1,536serverrackspercluster.[source:Meta]

SupportingAIisamassiveundertakingwithequallylargecosts.Playersarenowspendingmoreondatacenters

thantheentire5Gmarketoverthepasttwoyears,withinvestmentsreaching$116billionin2024.

Google’sAI-focusedA3supercomputerisincorporatingaround26,000NvidiaH100HopperGPUs.[source:

HPCwire

]

Dell’OrohasprojecteddatacenterCapexwillincreasefrom$260billionin2023tomorethan$500billionin2028.

Amazonisscalingupto20,000

NvidiaH100GPUsineachUltraScalecluster.[source:

Nvidia

]

Thescaleofgrowthisincredible,withanalystsestimatingover2.2milliongraphicsprocessingunits(GPUs)willbeshippedduring2024fordatacenterAIprocessingwith

costsrangingfrom$15-$40KperGPU.

EffectiveandefficientpowermanagementofAIdata

Oracle’sOCISuperclusterscales

upto32,768NvidiaA100GPUsacross4,096computebaremetalinstances.[source:

Oracle

]

centersisessentialformeetingsustainabilitygoalsandmaintainingprofitability.McKinsey&Companypredictsthatdatacenterpowerconsumptionwillreach35

ByteDanceisestimatedtobereceivingatotalof100,000NvidiaA100andH800GPUsduring2023.[source:

DataCenterDynamics

]

gigawattsby2030,enoughtopower26.2millionhomes.The

ElectricPowerResearchInstitute

seesdatacentersdrainingbetween4.6to9.1%ofU.S.electricityin2030.*EPRIalsofindsthat“At2.9watt-hoursperChatGPT

request,AIqueriesareestimatedtorequire10timestheelectricityoftraditionalGooglequeries.”

Theresultingoutsizedneedforcoolingisinspiring

innovationssuchasbuildingunderwaterdatacenter

Microsoftisestimatedtoalready

haveover600,000GPUswithplanstoscaleto1.8millionbytheendof2024.[source:

Forbes

]

facilitiesorlocatingtheminnordiccountryice,cappingGPUs,usinggreencoding,andevenrevertingtosmalllanguagemodels.

*EPRI,PoweringIntelligence:AnalyzingArtificialIntelligenceandDataCenterEnergyConsumptionreport(May28,2024)

Relentless

advancement

80xbandwidthincreaseover

12years

Sustainability/powerconsumptionmodel,

courtesyofEthernetAlliance

22x

totalpowerincrease

vs2010

7

CASPIRENTIMPACTREPORT

AI’sImpactonDataCenterNetworkingDesigns

GenAIisbecomingarapidly

growingconsumerofdatacenterresourcesandworkloads.

TheimpactissogreatthathyperscalersmusteitherbuildasinglenewarchitecturethatcanhandlecurrentcloudandenterpriseworkloadsplusAI(Google’sapproach)

orcompletelyrearchitectAIdatacenters.

DatacenterprovidersmustevolvetheirarchitecturestocopewithAItrafficgrowingtenfoldeverytwoyearsandacceleratorGPUlearningnodesscalingintothe

tensofthousandstomanagetherapidincreaseinmodelparameters.

Anewnetworkcalledthe“back-endnetwork”hasevolvedwiththesolepurposeofhandlingdata

movementbetweenGPUs.

Whilethetraditionalfront-endEthernetnetworkmustgrowtoingestmassivemodeltrainingdatasets,itistheback-endnetworkthatbearsthebruntofescalating

workloadsfromAIinferencingworkingonthenewdatasets.Thoseback-enddatacentertrainingworkloads

requireamultitudeofGPUorotherxPUhardwareacceleratorstoscaleupAIcomputingclusters.

8

9

CASPIRENTIMPACTREPORT

ConnectingtheseacceleratornodesinlargeGPUclustersrequiresaback-enddatacenternetworkfabric,whichdiffersfromthetraditionalfront-

endnetworkusedmostlytoconnectgeneralpurposeservers.

Theback-endinfrastructuresdemandaseparate,

scalable,routablenetworktointerconnectthousands

andeventensofthousandsofxPUstosupportAItrainingandinference.

TosupportAI,theback-endnetworkfabricneedstoprovide:

EXTREMELYHIGHTHROUGHPUTtohandlecompute-intensiveanddata-heavyworkloads

EXTREMELYLOWLATENCYtoquicklyprocessworkloadsthroughmanynodes

ZEROPACKETLOSStolowerlatency

MASSIVESCALABILITYforbillionsofparametersacrossthousandsofnodes

---

-

.

a-

.

..

.-a-

.

AInetwork

fabricspendingispoisedto

reach$11.33

billionandgrowby27.1%CAGRthrough2028.”

-GARTNER?

ThesedemandsnecessitatethatnewAIdatacenterdesignsmeetspecificrequirements,suchas:

SENDINGTHELARGEELEPHANTFLOWTRAFFICoutputofeveryGPUtrainingresulttoallotherGPUsintheclusterforharmonization

INCREASEDNETWORKINGBANDWIDTHtohandlethelargevolumesofdataexchanged

INCREDIBLYLOWANDDETERMINISTICLATENCYandlosslesspacketdeliveryrequiredforlatency-sensitivefront-endinferences,andtopreventback-endGPUtimeoutsandsynchronizationissues

DISTRIBUTEDTRAININGWORKLOADSrequiringparallelismtechniquestosynchronizeeast-westdataacrossnodes

Gartner?,ForecastAnalysis:AINetworkFabric,Worldwide,ByNareshSingh,29April2024.

GARTNERisaregisteredtrademarkandservicemarkofGartner,Inc.and/oritsaffiliatesintheU.S.andinternationallyandisusedhereinwithpermission.Allrightsreserved.

MULTIPLEAITRAFFICPATTERNSincludingAlltoAll,RingAllReduce,AllGather,andBroadcast,andmore

10

It’simpracticalfordatacenterstomeetthese

requirementsbysimplyaddingmoreracks.Instead,newdatacenterarchitecturesareessential.

During2023,leadingdatacenterprovidersincreased

Capexbybetween6%and13%tobuildoutAI

infrastructures(xPUclusters)andxPUinterconnectfabricstomeettheserequirements.

GivenAItraining’sintolerancetolatencyandpacket

loss,andwithlargevolumesoftrafficbeingexchangedacrosslargeelephantflows,datacenterarchitecturesareevolvingtoenablehighbandwidtheast-westtrafficbetweenback-endnetworkxPUclusters.

Todate,high-speednetworksforAItraininghavebeenremotedirectmemoryaccess(RDMA)overproprietary,losslessInfiniBand,butthereisgrowingfocusonevolvingEthernet,anopenstandardwithmassadoption,forthisuse.ComparedtoInfiniBand,Ethernetreducescostandcomplexityandlacksscalabilityconstraints.ProgressonevolvingEthernetincludes:

SUPPORTFORRDMAoverConvergedEthernet(RoCEv2),whichenablesdirectmemoryaccessbetweendevices

overEthernettoimproveperformanceandreduce

CPUutilization

EVOLUTIONOFLOSSLESSETHERNET,bringingadvanced

flowcontrol,improvedcongestionhandling,and

advancedflowtelemetrythatimprovesthecapabilitiesofmodernswitches

FORMATIONOFULTRAETHERNETCONSORTIUM

(UEC)andgrowingindustrysupportfortheUEC

focusonarchitecturesthatoptimizeEthernetforhighperformanceAIandHPCnetworking.TheUECis

collaborativelyworkingontheUltraEthernetTransport

(UET)specificationtomodernizeRDMA(RemoteDirect

MemoryAccess)operationoverEthernet,optimizedforAIandHPCworkloads.

NVIDIA’SNEWSPECTRUM-XETHERNETnetworkingplatformcomprisingitsSpectrum-XrangeofEthernetswitchesandBlueField–3super-NICs.Spectrum-X

offersDataCentersanEthernetalternativetoNvidia’sInfiniBandtechnology.

CISCORECENTLYINTRODUCEDTHENEXUS

HYPERFABRICAIclustersolution,co-developedwith

Nvidia,aimingtosimplifyAIinfrastructureforenterprisesusingEthernetnetworks.ItconsistsofCisco’s6000seriesswitchesforspineandleafthatdeliver400Gand800GEthernetfabricperformance.

ARISTAUNVEILEDITSNEWETHERLINKAIPLATFORMS

consistingof400Gand800GEthernetspineand

leafswitchessupportingtheemergingUltraEthernetConsortium’sstandards.

11

ASPIRENTIMPACTREPORT

AIDataCenterNetworkingFabricRequiresNewTestingApproaches

TraditionalAIdatacenterinterconnectfabricperformancetestingrequireslabstooperaterealserversandGPUs,withtestcasesconfiguredtogenerateAI

workloadsusingrealservers.

ThisisextremelyexpensivegiventhecostandlongleadtimestoacquireGPUs,aswellastheassociatedpowerconsumption

andrealestatespacerequired.Forexample,abasictestlabmaycomprise80-160GPUsacross10-20serversatcostsbetween$3millionand$6million.MoreadvancedlabscouldrequirethousandsofGPUs,pushingcoststotensof

millionsdollars.

Inaddition,usingtraditionalworkloadstotestAIfabricdoesn’tproperlymimicGPUtrafficloadsandpatterns.

Instead,newcost-efficientwaysofstresstestingAIdatacenternetworkingarebeingusedthatemulaterealisticGPUworkloadtraffic.

EmulationDiagram

AIDATACENTERROCEV2

NETWORKFABRICUNDERTEST

SpirentxPU

Emulation

12

CSPIRENTIMPACTREPORT

DataCenter

Networking

MarketInsights

Basedonhundredsofhigh-speedEthernetengagementsandinsights,Spirentistrackingthefollowinghigh-speedEthernettrendsandmarketimpacts.

CASPIRENTIMPACTREPORT

Evolvingdatacenterhigh-speedEthernetspeeds

?Largecloudhyperscalersaremovingtowardsthelatterstagesof100Gto400Grefreshcyclesandarebeginningtofocuson800G.

?Tier-twoandtier-threecloudserviceprovidersandlargeenterpriseshavebeguntoaccelerate400Grefreshes,

bypassing200G.

?400Gisconsideredmorefuture-proofduetoitslongerlifespan,

simplerupgradepathto800G,highertransmissionrates,andlowercostperunitofcapacity.

inthedatacenter

400

?800G’searlymomentum,drivenbyAIimpactsondatacenter

interconnectfabrics,willaccelerateasGPU-hostingserversevolvefromsupporting8to16GPUsandbeyond.

?Testingtimelinessuggesthyperscalerswillstartrefreshcyclesinlate2024following51.2Tbpsswitchavailability.Therestofthemarketwillfollowin2025andbeyond.

?Earlytestingengagementssuggesthyperscaler800GdeploymentsareshiftingfromQSFP-DDtoOSFP-XDpluggableformfactors.

?Early800GEthernetTechnologyConsortium(ETC)standardand

standardizedinteroperabilityissueswereresolvedwith

approvalof

theIEEE802.3dfstandard

.

inthedatacenter

800

?Workcontinuestowardsthefuture1.6TEthernetstandardthroughIEEE802.3dj,whichisanticipatedtobefinalizedin2026.

?Abaselinesetoffeaturesisexpectedtobecompletedthisyearbythe802.3djtaskforce,allowingthechipsetecosystemtostartdevelopingsilicon.

?ThereisadebatearoundthepotentialadoptionofOSFP-XD(pluggableopticalmodule)using16x100Gb/slanesversus8

x200Gb/s,asinitiallydemandedbytheindustry.Thiscould

speedtimetomarketwhilethe200Gb/stechnologychallengesareresolved.

1.6

T

futureevolution

14

CASPIRENTIMPACTREPORT

Dell’OrohasprojectedthatnearlyallAIback-endnetworkportswilloperateatspeedsof800Gandaboveby2027.

EthernetSwitchesinAIBack-EndNetworks

400Gbps800Gbps>1600Gbps

Over50MillionPortShipments

202320262028

Source:Dell’OroGroupAINetworksReport

Dell’OroforecastsEthernetswitchportshipmentsdeployedinAIback-endnetworkstosurpass50Mby2028.

HalfoftheEthernetswitchportshipmentsinAIback-endnetworkstobe800Gb/sby2025and1600Gb/sin2028,showingaveryfastmigrationtothehighestspeedsavailableinthemarket.

Powerandcoolinginnovations

Linear-drivepluggableoptics(LPOs)aregrowingininteresttoreduceescalatingdatacenterpowerconsumption,

cost,andlatency.Withlinear-driveoptics,theswitch

drivesthemoduleopticsdirectly,thuseliminatingdigital

signalprocessors(DSPs)andcuttingthemodule’spowerconsumptionbyhalf.However,adoptionmaybeimpactedbyAIworkloadswith200Gb/slanesthatmayrequireDSPs

toaligntheelectricalandopticallanes.Inaddition,untilthe

LPO-MSA

andOIFreleasesspecificationsthatwillenablecompatibilityamongsuppliers,marketadoptionwillremainslow.

WhileLPO’sofferatantalizingpossibilityofreducedpowerit’sstilltooearlyintechnicalmaturitytopredictwidescalemarketadoption.

15

CASPIRENTIMPACTREPORT

SPIRENTINNOVATIONSPOTLIGHTS

Industry’sfirstlarge-scale800Gtest

SpirentsupportedH3Ctocompletethe

industry’sfirstlarge-scalehigh-density

800GEthernettest

withupto64800Gports.ThereliabilityandhighperformanceofH3CS9827,apowerfulseriesofswitchesfordatacentersandcloudcomputingnetworks,werevalidatedwithSpirent’saward-winninghigh-densityB2800G

Appliance.TheH3CS9827seriesisanewgenerationof800Gdatacenterswitchesdesignedtohandlelarge-scaleworkloadsfromAI-generatedcontent(AIGC).The800Gswitchesuseco-packagedoptics(CPO)thatintegratesiliconandphotonics.

Spirenttestresultsshowedatotalswitchingcapacityofupto51.2T,withall64

portsachieving100%linespeedforwardingunderdifferenttraffic.Eachport

transmissionratereached800GbpsandtheCPOtechnologyfullymetthehigh

throughputdemandsforintelligentcomputingnetworking.TheseresultsmaketheH3CS9827suitableforAIGCclustersandotherhigh-performancedatacentercoreswitchingandrelatedapplications.

KEYTAKEAWAY:

Spirent’s

groundbreaking

validationofH3C’s

800GEthernet

switchesunderscoresunparalleledreliabilityandperformance,

settinganewstandard

forhigh-density,AI-drivendatacenternetworks.

16

CASPIRENTIMPACTREPORT

SPIRENTINNOVATIONSPOTLIGHTS

Industry’sfirstAItrafficemulationplatformfor

datacenternetworkingusingEthernet

Spirentwashonoredwiththree“BestofShow”awardsbyInteropTokyo

2024

,includingthe“GrandPrize”foraground-breakingAItrafficemulationsolutioncapableofemulatingrealisticArtificialIntelligence(AI)workloadsoverEthernet.

AImodelsdemandunprecedentedbandwidth,drivingdatacenterstotransitionfrom400Gto800G,andeventuallyto1.6Tspeeds.Thisrapidevolutioniscrucialformeetingthemassivedatademands.However,AIdatacentersrequireadifferentapproachcomparedtotraditionalones.Recognizingthis,SpirenthasdevelopednewtestingmethodologiestoemulateAIworkloadsaccurately.

ForsuccessfulAIdatacenterdeployment,Spirentadvocatesa“trustbut

verify”approachwiththoroughstresstestingofthenetworkfabrictoidentifyandmitigatepotentialbottlenecks.ThisproactivetestingensuresthatGPUs,whichareexpensiveandcriticaltoAIoperations,donotsitidleduetonetworkissues.TraditionaltesterscannotmimicAItrafficpatterns.Spirentsolutioncanemulatethehigh-bandwidth,low-latencydemandsofAI,offeringamore

realisticassessmentofnetworkperformancebeforedeployment.

KEYTAKEAWAY:

Spirenttestsolutionshelpensuretheconformance,

performance,interoperability,flexibility,andscalabilityof800GdeploymentsandAIworkloads.Automated

testingreducesnetworktextcomplexityandsimplifiesandacceleratesthepathto1.6T.

KEYTAKEAWAY:

ByemulatingrealisticAI

workloads,Spirenthelps

customersgainconfidence

intheirnetworkinfrastructure,

maximizingefficiencyandminimizingtheriskof

costlydisruptions.

SPIRENTINNOVATIONSPOTLIGHTS

Supporting

thehigh-speed

Ethernetecosystem

Spirentwasan

activeparticipant

andcontributorattheOFC2024event,showcasingitsnewB3800GAppliance,ahigh-densitynative800GOSFPandQSFP-DDtestplatform,andthefirst

initsclasstosupportIEEE802.3dfspecifications.

Togetherwithadozenecosystem

partners,Spirentdemonstratedits

award-winning800Gtestplatformsfor

validatingthereliability,performance,andinteroperabilityofthelatesthigh-speed

networkingsolutionsanddevicesacrossvariousinterconnecttechnologies.(Readour

blogpost

withkeytakeawaysfromthisevent.)

17

CASPIRENTIMPACTREPORT

TelecomServiceProvider

WirelineNetworkingMarketInsights

Whilehyperscalercloudprovidersaremigratingto800G,serviceprovidersareevolving

wirelinenetworks,fromedgenetworkdevicestoedge,regional,and

centralizeddatacenters.

Example:

TelcoNetworkIPevolution1G400G

5GIPcore:400Gmomentumgrows

Todate,telecomserviceprovidershaveinitiallyfocusedonRANandedgetransportnetworkswiththeintroductionof5GNon-standalone(NSA)networks.Now,asthey

transitionto5GStandalone(SA),thefocushasshiftedtoIPcoredeployments.Thegrowthin5GtrafficisdrivingawaveofIPcorenetworkupgradesto400Gtoreducecosts.400Galsooffershigherspeedsperportand

decreasedenergyconsumption,reducingthenumberofportsandrackspacerequired.

TheQSFP-DDformfactoriscurrentlybecomingthemostpopularchoiceformodule/connectorforserviceprovidersevolvingto400G.

5GRAN:highercapacityneeded

Growing5Gtrafficandincreasing5GRANdeployments

aretriggeringtheneedformorecapacityandhigher

speedsatcellandaggregationsites.Thisisdriving

transportnetworkupgradesfrom1Gto10Gandeven25Gforcellsiteinterconnects,and100Gatedgeaggregationsites.Forexample,burgeoningvirtualizedandOpenRANnetworksaredrivingthedemandfor25Gcapacityon

eCPRIinterfacestosupportMIMOradios.Thisincreasestheneedfor10/25Gatthecellsitetoterminateradiolinksand100GorhigherconnectionstowardstheCentralizedUnit(CU).MostvirtualDU(DistributedUnits)arealsobeingdeployedtodaywith100Gnetworkinterfacecards(NICs).

18

CASPIRENTIMPACTREPORT

800G:buildingawareness

Serviceprovidersremainfocusedonthejourneyto400Gbutrealizetheyneedtoconsider800Ginthenextnumberofyearsastrafficincreaseswiththehigherbandwidth

demandsofAIand5G’sevolutionto5GAdvancedand

6G.Nascentenhancedservicessuchasextendedrealityandultra-high-definitionvideoarealsogeneratingearlyawarenessin800G.

Thisisleadingmanyserviceproviderstoaskvendors

toensure400Gupgradecycleswillbe800G-readytoenableaseamlessrefreshinthreetofouryears.Late

followersmayevenbypass400Gandrefreshfrom100Gdirectlyto800G.

AIinference:edgecapacitywillgrow

AsserviceprovidersendeavortoadoptAI/ML,includinghostingandmonetizingthird-partyapplications,networktransportinfrastructureisinurgentneedofpreparation.

AI/MLprocessingwillbehighlydistributedacrosstelecomnetworkswithinferenceprimarilytakingplaceacross

variousedgelocations,includingfar-edgeatcellsitesor

hubsites,mid-edgeataggregationsites,andnear-edgeatcoresites.

Inferenceismorerelevanttoedgelocationsduetothe

real-timelowlatencyrequirementsofusecasesandthefactthatmostedgelocationsonlyneedtohostsmaller

pre-trainedmodelsthatrequirelessstorageandcomputeoverheadsversuscentralizeddatacenterlocationswheretrainingandlearningprocessingwilltakeplace.

Asinferenceusecasesattheedgegrow,asignificantamountofAItrafficwilltraverseedgelocations,

promptingtheneedforearlycapacityupgradesinaccessandtransportnetworks.

Earlyforecastssuggestedgelocationscouldrequire

substantialadditionalcapacitieswithfar-edgesites

requiring25-50Gspeedgradeupgrades,mid-edge

sitesrequiring100-200Gandnear-edgesitesrequiring400Gwithpotentiallyafasterrefreshcycleto800G.

19

CASPIRENTIMPACTREPORT

Networkslicing:hardandsoftslices

Takingadvantageofnewtechnologiescomingintoplayinthenextfewyears,telecomnetw

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論