版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
重慶萬州沙河中學2025屆高二上數(shù)學期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線:與雙曲線的兩條漸近線分別相交于A、B兩點,若C為直線與y軸的交點,且,則k等于()A.4 B.6C. D.2.已知為偶函數(shù),且,則___________.3.青花瓷是中華陶瓷燒制工藝的珍品,也是中國瓷器的主流品種之一.如圖,是一青花瓷花瓶,其外形上下對稱,可看成是雙曲線的一部分繞其虛軸旋轉所形成的曲面.若該花瓶的瓶口直徑為瓶身最小直徑的2倍,花瓶恰好能放入與其等高的正方體包裝箱內(nèi),則雙曲線的離心率為()A. B.C. D.4.如圖,橢圓的右焦點為,過與軸垂直的直線交橢圓于第一象限的點,點關于坐標原點的對稱點為,且,,則橢圓方程為()A. B.C. D.5.已知函數(shù),若,,則實數(shù)的取值范圍是A. B.C. D.6.圓與圓的交點為A,B,則線段AB的垂直平分線的方程是A. B.C. D.7.已知命題p:,,則()A., B.,C., D.,8.已知A,B,C三點不共線,O是平面ABC外一點,下列條件中能確定點M與點A,B,C一定共面的是A. B.C. D.9.將6位志愿者分成4組,其中兩個組各2人,另兩個組各1人,分赴廣交會的四個不同地方服務,不同的分配方案有()種A.· B.·C. D.10.已知數(shù)列是等差數(shù)列,其前n項和為,則下列說法錯誤的是()A.數(shù)列一定是等比數(shù)列 B.數(shù)列一定是等差數(shù)列C.數(shù)列一定是等差數(shù)列 D.數(shù)列可能是常數(shù)數(shù)列11.已知A(3,2),點F為拋物線的焦點,點P在拋物線上移動,為使取得最小值,則點P的坐標為()A.(0,0) B.(2,2)C. D.12.已知等差數(shù)列滿足,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖直線過點,且與直線和分別相交于,兩點.(1)求過與交點,且與直線垂直的直線方程;(2)若線段恰被點平分,求直線的方程.14.牛頓迭代法又稱牛頓-拉夫遜方法,它是牛頓在17世紀提出的一種在實數(shù)集上近似求解方程根的一種方法.具體步驟如下:設r是函數(shù)y=f(x)的一個零點,任意選取x0作為r的初始近似值,作曲線y=f(x)在點(x0,f(x0))處的切線l1,設l1與x軸交點的橫坐標為x1,并稱x1為r的1次近似值;作曲線y=f(x)在點(x1,f(x1))處的切線l2,設l2與x軸交點的橫坐標為x2,并稱x2為r的2次近似值.一般的,作曲線y=f(x)在點(xn,f(xn))(n∈N)處的切線ln+1,記ln+1與x軸交點的橫坐標為xn+1,并稱xn+1為r的n+1次近似值.設f(x)=x3+x-1的零點為r,取x0=0,則r的2次近似值為________15.隨機投擲一枚均勻的硬幣兩次,則兩次都正面朝上的概率為______16.函數(shù),若,則的值等于_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐的底面是正方形,平面平面,E為的中點(1)若,證明:;(2)求直線與平面所成角的余弦值的取值范圍18.(12分)設函數(shù),其中是自然對數(shù)的底數(shù),.(1)若,求的最小值;(2)若,證明:恒成立.19.(12分)已知數(shù)列是等差數(shù)列,其前n項和為,,,數(shù)列滿足(且),.(1)求和的通項公式;(2)求數(shù)列的前n項和.20.(12分)已知函數(shù)f(x)=ax3+bx2﹣3x在x=﹣1和x=3處取得極值.(1)求a,b的值(2)求f(x)在[﹣4,4]內(nèi)的最值.21.(12分)已知圓M的圓心在直線上,且圓心在第一象限,半徑為3,圓M被直線截得的弦長為4.(1)求圓M的方程;(2)設P是直線上的動點,證明:以MP為直徑的圓必過定點,并求所有定點的坐標.22.(10分)已知橢圓:()的左、右焦點分別為,焦距為,過點作直線交橢圓于兩點,的周長為.(1)求橢圓的方程;(2)若斜率為的直線與橢圓相交于兩點,求定點與交點所構成的三角形面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】先求出雙曲線的漸近線方程,然后分別與直線聯(lián)立,求出A、B兩點的橫坐標,再利用可求解.【詳解】由雙曲線方程可知其漸近線方程為:,當時,與聯(lián)立,得,同理得,由,且可知,所以有,解得.故選:D2、8【解析】由已知條件中的偶函數(shù)即可計算出結果,【詳解】為偶函數(shù),且,.故答案為:83、C【解析】由題意作出軸截面,最短直徑為2a,根據(jù)已知條件點(2a,2a)在雙曲線上,代入雙曲線的標準方程,結合a,b,c的關系可求得離心率e的值【詳解】由題意作出軸截面如圖:M點是雙曲線與截面正方形的交點之一,設雙曲線的方程為:最短瓶口直徑為A1A2=2a,則由已知可得M是雙曲線上的點,且M(2a,2a)故,整理得4a2=3b2=3(c2﹣a2),化簡后得,解得故選:C4、C【解析】連結,設,則,,由可求出,進而可求出,得出橢圓方程.【詳解】由題意設橢圓的方程:,設左焦點為,連結,由橢圓的對稱性易得四邊形為平行四邊形,由得,又,設,則,,又,解得,又由,,解得,,,則橢圓的方程為.故選:C.【點睛】關鍵點睛:本題考查了橢圓的標準方程求解及橢圓的簡單幾何性質,在求解橢圓標準方程時,關鍵是求解基本量,,.5、A【解析】函數(shù),若,,可得,解得或,則實數(shù)的取值范圍是,故選A.6、A【解析】圓的圓心為,圓的圓心為,兩圓的相交弦的垂直平分線即為直線,其方程為,即;故選A.【點睛】本題考查圓的一般方程、兩圓的相交弦問題;處理直線和圓、圓和圓的位置關系時,往往結合平面幾何知識(如本題中,求兩圓的相交弦的垂直平分線的方程即為經(jīng)過兩圓的圓心的直線方程)可減小運算量.7、C【解析】由全稱命題的否定:將任意改存在并否定結論,即可寫出原命題p的否定.【詳解】由全稱命題的否定為特稱命題,∴是“,”.故選:C.8、D【解析】首先利用坐標法,排除錯誤選項,然后對符合的選項驗證存在使得,由此得出正確選項.【詳解】不妨設.對于A選項,,由于的豎坐標,故不在平面上,故A選項錯誤.對于B選項,,由于的豎坐標,故不在平面上,故B選項錯誤.對于C選項,,由于的豎坐標,故不在平面上,故C選項錯誤.對于D選項,,由于的豎坐標為,故在平面上,也即四點共面.下面證明結論一定成立:由,得,即,故存在,使得成立,也即四點共面.故選:D.【點睛】本小題主要考查空間四點共面的證明方法,考查空間向量的線性運算,考查數(shù)形結合的數(shù)學思想方法,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.9、B【解析】先按要求分為四組,再四個不同地方,四個組進行全排列.【詳解】兩個組各2人,兩個組各1人,屬于部分平均分組,要除以平均分組的組數(shù)的全排列,故分組方案有種,再將分得的4組,分配到四個不同地方服務,則不同的分配方案有種.故選:B10、B【解析】可根據(jù)已知條件,設出公差為,選項A,可借助等比數(shù)列的定義使用數(shù)列是等差數(shù)列,來進行判定;選項B,數(shù)列,可以取,即可判斷;選項C,可設,表示出再進行判斷;選項D,可采用換元,令,求得的關系即可判斷.【詳解】數(shù)列是等差數(shù)列,設公差為,選項A,數(shù)列是等差數(shù)列,那么為常數(shù),又,則數(shù)列一定是等比數(shù)列,所以選項A正確;選項B,當時,數(shù)列不存在,故該選項錯誤;選項C,數(shù)列是等差數(shù)列,可設(A、B為常數(shù)),此時,,則為常數(shù),故數(shù)列一定是等差數(shù)列,所以該選項正確;選項D,,則,當時,,此時數(shù)列可能是常數(shù)數(shù)列,故該選項正確.故選:B.11、B【解析】設點P到準線的距離為,根據(jù)拋物線的定義可知,即可根據(jù)點到直線的距離最短求出【詳解】如圖所示:設點P到準線的距離為,準線方程為,所以,當且僅當點為與拋物線的交點時,取得最小值,此時點P的坐標為故選:B12、D【解析】根據(jù)等差數(shù)列的通項公式求出公差,再結合即可得的值.【詳解】因為是等差數(shù)列,設公差為,所以,即,所以,所以,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、(1);(2).【解析】本題考查直線方程的基本求法:垂直直線的求法、點關于點對稱、點在直線上的待定系數(shù)法【詳解】(1)由題可得交點,所以所求直線方程為,即;(2)設直線與直線相交于點,因為線段恰被點平分,所以直線與直線的交點的坐標為將點,的坐標分別代入,的方程,得方程組解得由點和點及兩點式,得直線的方程為,即【點睛】直線的考法主要以點的對稱和直線的平行與垂直為主.點關于點的對稱,點關于直線的對稱,直線關于直線的對稱,是重點考察內(nèi)容14、##【解析】利用導數(shù)的幾何意義根據(jù)r的2次近似值的定義求解即可【詳解】由,得,取,,所以過點作曲線的切線的斜率為1,所以直線的方程為,其與軸交點的橫坐標為1,即,因為,所以過點作曲線的切線的斜率為4,所以直線的方程為,其與軸交點的橫坐標為,即,故答案為:15、##【解析】列舉出所有情況,利用古典概型的概率公式求解即可【詳解】隨機投擲一枚均勻的硬幣兩次,共有:正正,正反,反正,反反共4種情況,兩次都是正面朝上的有:正正1種情況,所以兩次都正面朝上的概率為,故答案為:16、【解析】對函數(shù)進行求導,把代入導函數(shù)中,化簡即可求出的值.【詳解】函數(shù).故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)取的中點F,連接.先證明,,即證平面,原題即得證;(2)分別取的中點G,H,連接,證明為直線與平面所成的角,設正方形的邊長為1,,在中,,即得解.【小問1詳解】解:取的中點F,連接因為,則為正三角形,所以因為平面平面,則平面因為平面,則.①因為四邊形為正方形,E為的中點,則,所以,從而,所以.②又平面,結合①②知,平面,所以【小問2詳解】解:分別取的中點G,H,則,又,,則,所以四邊形為平行四邊形,從而.因為,則因為平面平面,,則平面,從而,因為平面,所以平面,從而平面連接,則為直線與平面所成的角.設正方形的邊長為1,,則從而,.在中,因為當時,單調(diào)遞增,則,所以直線與平面所成角的余弦值的取值范圍是.18、(1)(2)證明見解析【解析】(1)當時,,求出,可得答案;(2)設,,,,,設,求出利用單調(diào)性可得答案.【小問1詳解】當時,,則,所以單調(diào)遞增,又,當時,,單調(diào)遞減,當時,,單調(diào)遞增,所以.【小問2詳解】設,若,則,若,則,設,則,所以單調(diào)遞增,又,當時,,上單調(diào)遞減,當時,,單調(diào)遞增,所以,所以,綜上,恒成立.【點睛】本題考查了求函數(shù)值域或最值的問題,一般都需要通過導數(shù)研究函數(shù)的單調(diào)性、極值、最值來處理,特別的要根據(jù)所求問題,適時構造恰當?shù)暮瘮?shù),再利用所構造函數(shù)的單調(diào)性、最值解決問題是常用方法,考查了學生分析問題、解決問題的能力.19、(1),;(2).【解析】(1)根據(jù),列方程組即可求解數(shù)列的通項公式,根據(jù)可求數(shù)列的通項公式;(2)化簡,利用裂項相消法求該數(shù)列前n項和.【小問1詳解】設等差數(shù)列公差為d,∵,∴,∵公差,∴.由得,即,∴數(shù)列是首項為,公比為2的等比數(shù)列,∴;【小問2詳解】∵,∴,.20、(1)a,b=﹣1(2)f(x)min=,f(x)max=【解析】(1)先對函數(shù)求導,由題意可得=3ax2+2bx﹣3=0的兩個根為﹣1和3,結合方程的根與系數(shù)關系可求,(2)由(1)可求,然后結合導數(shù)可判斷函數(shù)的單調(diào)性,進而可求函數(shù)的最值.【詳解】解:(1)=3ax2+2bx﹣3,由題意可得=3ax2+2bx﹣3=0的兩個根為﹣1和3,則,解可得a,b=-1,(2)由(1),易得f(x)在,單調(diào)遞增,在上單調(diào)遞減,又f(﹣4),f(﹣1),f(3)=﹣9,f(4),所以f(x)min=f(﹣4),f(x)max=f(﹣1).【點睛】本題考查利用極值求函數(shù)的參數(shù),以及利用導數(shù)求函數(shù)的最值問題,屬于中檔題21、(1);(2)證明見解析,定點和.【解析】(1)根據(jù)給定條件設出圓心坐標,再結合點到直線距離公式計算作答.(2)設點,求出圓的方程,結合方程求出其定點.【小問1詳解】因圓M的圓心在直線上,且圓心在第一象限,設圓心,且,圓心到直線的距離為,又由解得,從而,而,解得,所以圓M的方程為.【小問2詳解】由(1)知:,設點,,設動圓上任意一點當與點P,M都不重合時,,有,當與點P,M之一重合時,對應為零向量,也成立,,,,化簡得:,由,解得或,所以以MP為直徑的圓必過定點和.【點睛】方法點睛:待定系數(shù)法求圓的方程,由題設條件,列出等式,求出相關量.一般地,與圓心和半徑有關,選擇標準式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數(shù),所以應該有三個獨立等式22、(1)(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024至2030年立式萬能磨擦磨損試驗機項目投資價值分析報告
- 2024至2030年測滑板項目投資價值分析報告
- 2024年版電商平臺運營合作協(xié)議
- 陜西鐵路工程職業(yè)技術學院《自然地理學》2023-2024學年第一學期期末試卷
- 設備裝卸搬運勞務合同范例
- 2024年鋼制大小頭項目可行性研究報告
- 2024年電坩堝爐項目可行性研究報告
- 醫(yī)藥回款合同范例
- 2024年實驗室操作邊臺項目可行性研究報告
- 2024年圓環(huán)型散流器項目可行性研究報告
- 閑置固定資產(chǎn)明細表
- 2022年雅思翻譯句精華版
- 單軸水泥攪拌樁施工方案設計
- 老年人睡眠障礙的護理(PPT課件)
- 《家庭禮儀》PPT課件
- 應聘人員面試登記表(應聘者填寫)
- T∕CAAA 005-2018 青貯飼料 全株玉米
- s鐵路預應力混凝土連續(xù)梁(鋼構)懸臂澆筑施工技術指南
- 撥叉831006設計說明書
- 程序語言課程設計任意兩個高次多項式的加法和乘法運算
- 石油鉆井八大系統(tǒng)ppt課件
評論
0/150
提交評論