版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
福建省閩侯市第六中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是雙曲線C的兩個焦點,P為C上一點,且,則C的離心率為()A. B.C. D.2.函數(shù)的導(dǎo)數(shù)記為,則等于()A. B.C. D.3.如圖,正三棱柱中,,則與平面所成角的正弦值等于()A. B.C. D.4.空間直角坐標系中、、)、,其中,,,,已知平面平面,則平面與平面間的距離為()A. B.C. D.5.設(shè)雙曲線:的左焦點和右焦點分別是,,點是右支上的一點,則的最小值為()A.5 B.6C.7 D.86.已知i是虛數(shù)單位,復(fù)數(shù)z=,則復(fù)數(shù)z的虛部為()A.i B.-iC.1 D.-17.設(shè),,,…,,,則()A. B.C. D.8.已知,則“”是“”的()A.充分不必要條件 B.充要條件C.必要不充分條件 D.既不充分也不必要條件9.某學(xué)校的校車在早上6:30,6:45,7:00到達某站點,小明在早上6:40至7:10之間到達站點,且到達的時刻是隨機的,則他等車時間不超過5分鐘的概率是()A. B.C. D.10.已知等比數(shù)列{an}的前n項和為S,若,且,則S3等于()A.28 B.26C.28或-12 D.26或-1011.從某個角度觀察籃球(如圖甲),可以得到一個對稱的平面圖形,如圖乙所示,籃球的外輪廓為圓,將籃球表面的粘合線視為坐標軸和雙曲線,若坐標軸和雙曲線與圓的交點將圓的周長八等分,且,則該雙曲線的離心率為()A. B.C.2 D.12.在空間直角坐標系中,方程所表示的圖形是()A圓 B.橢圓C.雙曲線 D.球二、填空題:本題共4小題,每小題5分,共20分。13.已知P是橢圓的上頂點,過原點的直線l交C于A,B兩點,若的面積為,則l的斜率為____________14.若,且,則的最小值是____________.15.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層燈數(shù)為_____________16.已知點和,M是橢圓上一動點,則的最大值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓C:,圓C與x軸交于A,B兩點(1)求直線y=x被圓C所截得的弦長;(2)圓M過點A,B,且圓心在直線y=x+1上,求圓M的方程18.(12分)已知四邊形是空間直角坐標系中的一個平行四邊形,且,,(1)求點的坐標;(2)求平行四邊形的面積19.(12分)(1)已知命題p:;命題q:,若“”為真命題,求x的取值范圍(2)設(shè)命題p:;命題q:,若是的充分不必要條件,求實數(shù)a的取值范圍20.(12分)已知是等差數(shù)列的前n項和,且,(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前n項和21.(12分)已知函數(shù)f(x)=ax-2lnx(1)討論f(x)的單調(diào)性;(2)設(shè)函數(shù)g(x)=x-2,若存在,使得f(x)≤g(x),求a的取值范圍22.(10分)已知圓過點,,且圓心在直線:上.(1)求圓的方程;(2)若從點發(fā)出的光線經(jīng)過軸反射,反射光線剛好經(jīng)過圓心,求反射光線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)雙曲線的定義及條件,表示出,結(jié)合余弦定理可得答案.【詳解】因為,由雙曲線的定義可得,所以,;因為,由余弦定理可得,整理可得,所以,即.故選:A【點睛】關(guān)鍵點睛:雙曲線的定義是入手點,利用余弦定理建立間的等量關(guān)系是求解的關(guān)鍵.2、D【解析】求導(dǎo)后代入即可.【詳解】,.故選:D.3、C【解析】取中點,連接,,證明平面,從而可得為與平面所成角,再利用三角函數(shù)計算的正弦值.【詳解】取中點,連接,,在正三棱柱中,底面是正三角形,∴,又∵底面,∴,又,∴平面,∴為與平面所成角,由題意,,,在中,.故選:C4、A【解析】由已知得,,,設(shè)向量與向量、都垂直,由向量垂直的坐標運算可求得,再由平面平行和距離公式計算可得選項.【詳解】解:由已知得,,,設(shè)向量與向量、都垂直,則,即,取,,又平面平面,則平面與平面間的距離為,故選:A.5、C【解析】根據(jù)雙曲線的方程求出的值,由雙曲線的定義可得,由雙曲線的性質(zhì)可知,利用函數(shù)的單調(diào)性即可求得最小值.【詳解】由雙曲線:可得,,所以,所以,,由雙曲線的定義可得,所以,所以,由雙曲線的性質(zhì)可知:,令,則,所以上單調(diào)遞增,所以當(dāng)時,取得最小值,此時點為雙曲線的右頂點,即的最小值為,故選:C.6、C【解析】先通過復(fù)數(shù)的除法運算求出z,進而求出虛部.【詳解】由題意,,則z的虛部為1.故選:C.7、B【解析】根據(jù)已知條件求得的規(guī)律,從而確定正確選項.【詳解】,,,,,……,以此類推,,所以.故選:B8、B【解析】求得中的取值范圍,由此確定充分、必要條件.【詳解】,,所以“”是“”的充要條件.故選:B9、B【解析】求出小明等車時間不超過5分鐘能乘上車的時長,即可計算出概率.【詳解】6:40至7:10共30分鐘,小明同學(xué)等車時間不超過5分鐘能乘上車只能是6:40至6:45和6:55至7:00到站,共10分鐘,所以所求概率為.故選:B10、C【解析】根據(jù)等比數(shù)列的通項公式列出方程求解,直接計算S3即可.【詳解】由可得,即,所以,又,解得,所以,即,當(dāng)時,,所以,當(dāng)時,,所以,故選:C11、B【解析】設(shè)出雙曲線方程,把雙曲線上的點的坐標表示出來并代入到方程中,找到的關(guān)系即可求解.【詳解】以O(shè)為原點,AD所在直線為x軸建系,不妨設(shè),則該雙曲線過點且,將點代入方程,故離心率為,故選:B【點睛】本題考查已知點在雙曲線上求雙曲線離心率的方法,屬于基礎(chǔ)題目12、D【解析】方程表示空間中的點到坐標原點的距離為2,從而可知圖形的形狀【詳解】由,得,表示空間中的點到坐標原點的距離為2,所以方程所表示的圖形是以原點為球心,2為半徑的球,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)出直線AB的方程,聯(lián)立橢圓方程得到A點橫坐標滿足,再利用,解方程即可得到答案.【詳解】設(shè)直線AB的方程為:,,由,得,所以,又所以,解得.故答案為:14、【解析】應(yīng)用基本不等式“1”的代換求a+4b的最小值即可.【詳解】由,有,則,當(dāng)且僅當(dāng),且,即時等號成立,∴最小值為.故答案為:15、3【解析】分析:設(shè)塔的頂層共有a1盞燈,則數(shù)列{an}公比為2的等比數(shù)列,利用等比數(shù)列前n項和公式能求出結(jié)果詳解:設(shè)塔的頂層共有a1盞燈,則數(shù)列{an}公比為2的等比數(shù)列,∴S7==381,解得a1=3.故答案為3.點睛:本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力.16、【解析】由題設(shè)條件可知,.當(dāng)M在直線與橢圓交點上時,在第一象限交點時有,在第三象限交點時有.顯然當(dāng)M在直線與橢圓第三象限交點時有最大值,其最大值.由此能夠求出的最大值.【詳解】解:A為橢圓右焦點,設(shè)左焦點為,則由橢圓定義,于是.當(dāng)M不在直線與橢圓交點上時,M、F、B三點構(gòu)成三角形,于是,而當(dāng)M在直線與橢圓交點上時,在第一象限交點時,有,在第三象限交點時有.顯然當(dāng)M在直線與橢圓第三象限交點時有最大值,其最大值為.故答案為:.【點睛】本題考查橢圓的基本性質(zhì),解題時要熟練掌握基本公式.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)已知條件,結(jié)合垂徑定理,以及點到直線的距離公式,即可求解(2)根據(jù)已知圓的方程,令y=0,結(jié)合韋達定理,求出圓心的橫坐標,即可求出圓心,再結(jié)合勾股定理,即可求出半徑【小問1詳解】∵圓C:,∴,即圓心為(-1,1),半徑r=3,∵直線y=x,即x-y=0,∴圓心(-1,1)到直線x-y=0的距離d=,∴直線y=x被圓C所截得的弦長為=【小問2詳解】設(shè)A(x1,y1),B(x2,y2),∵圓C:,圓C與x軸交于A,B兩點,∴x2-2x-7=0,則,|x1-x2|==,∴圓心的橫坐標為x=,∵圓心在直線y=x+1上,∴圓心為(1,2),∴半徑r=,故圓M的方程為18、(1);(2)【解析】(1)由題設(shè)可得,結(jié)合向量的共線坐標表示求的坐標;(2)向量的坐標運算求邊長,由余弦定理求,進而求其正弦值,再應(yīng)用三角形面積公式求面積.【小問1詳解】由題設(shè),,令,則,∴,可得,故.【小問2詳解】由(1),,,則,又,則,∴平行四邊形的面積.19、(1)(2)【解析】根據(jù)復(fù)合命題的真值表知:p真q假;非q是非p的充分不必要條件,等價于p是q的充分不必要條件,等價于p是q的真子集【詳解】命題p:,即;命題,即;由于“”為真命題,則p真q假,從而由q假得,,所以x的取值范圍是命題p:,即命題q:,即由于是的充分不必要條件,則p是q的充分不必要條件即有,【點睛】本題考查了復(fù)合命題及其真假屬基礎(chǔ)題20、(1)(2)【解析】(1)設(shè)等差數(shù)列的首項、公差,由列出關(guān)于首項、公差的方程組,解方程組可得與的值,從而可得數(shù)列的通項公式;(2)由(1)可知,利用裂項相消法可求數(shù)列的前n項和.小問1詳解】依題意:設(shè)等差數(shù)列的首項為,公差為,則解得所以數(shù)列的通項公式為【小問2詳解】由(1)可知因為,所以,所以.21、(1)答案見解析;(2).【解析】(1)根據(jù)實數(shù)a的正負性,結(jié)合導(dǎo)數(shù)的性質(zhì)分類討論求解即可;(2)利用常變量分離法,通過構(gòu)造函數(shù),利用導(dǎo)數(shù)的性質(zhì)進行求解即可.【小問1詳解】當(dāng)a≤0時,在(0,+∞)上恒成立;當(dāng)a>0時,令得;令得;綜上:a≤0時f(x)在(0,+∞)上單調(diào)遞減;a>0時,f(x)在上單調(diào)遞減,在上單調(diào)遞增;【小問2詳解】由題意知ax-2lnx≤x-2在(0,+∞)上有解則ax≤x-2+2lnx,令,xg'(x)+0-g(x)↗極大值↘所以,因此有所以a的取值范圍為:【點睛】關(guān)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Unit3 Listening 說課稿2024-2025學(xué)年外研版七年級英語上冊
- 山東省聊城市陽谷縣四校2024-2025學(xué)年七年級上學(xué)期1月期末水平調(diào)研道德與法治試題(含答案)
- 二零二五年度城市停車場施工廉政管理服務(wù)合同3篇
- 貴州商學(xué)院《軟裝設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 信息技術(shù)《使用掃描儀》說課稿
- 2025版家庭親子教育圖書訂閱服務(wù)合同范本3篇
- 二零二五年度家族企業(yè)股東股權(quán)繼承轉(zhuǎn)讓協(xié)議3篇
- 2024年江西省九江市潯陽區(qū)白水湖街道招聘社區(qū)工作者考前自測高頻考點模擬試題(共500題)含答案
- 貴州理工學(xué)院《藝術(shù)欣賞》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴州交通職業(yè)技術(shù)學(xué)院《泵與風(fēng)機課程設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 食堂項目經(jīng)理培訓(xùn)
- 安全經(jīng)理述職報告
- 福建省泉州市2023-2024學(xué)年高一上學(xué)期期末質(zhì)檢英語試題 附答案
- 建筑項目經(jīng)理招聘面試題與參考回答(某大型集團公司)2024年
- 安保服務(wù)評分標準
- (高清版)DB34∕T 1337-2020 棉田全程安全除草技術(shù)規(guī)程
- 部編版小學(xué)語文二年級上冊單元測試卷含答案(全冊)
- 護理部年終總結(jié)
- 部編版三年級上冊語文語文期末質(zhì)量監(jiān)測(含答題卡)
- KISSSOFT操作與齒輪設(shè)計培訓(xùn)教程
- 2024年第二季度粵港澳大灣區(qū)經(jīng)濟分析報告-PHBS
評論
0/150
提交評論