版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
甘肅省蘭州市蘭州第一中學(xué)2023-2024學(xué)年高二上學(xué)期期中數(shù)學(xué)試題一、單選題1.若曲線:表示圓,則實數(shù)的取值范圍為(
)A. B.C. D.2.若直線與平行,則與間的距離為(
)A. B.C. D.3.阿基米德(公元前年—公元前年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“通近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的對稱軸為坐標(biāo)軸,焦點在軸上,且橢圓的離心率為,面積為則橢圓的方程為(
)A. B. C. D.4.等差數(shù)列中,,則此數(shù)列的前項和等于(
)A.160 B.180 C.200 D.2205.設(shè)等比數(shù)列的前項和為,若,則等于(
)A. B. C. D.6.已知圓的半徑為,且,過點的2023條弦的長度組成一個等差數(shù)列,最短弦長為,最長弦長為,則其公差為(
)A. B. C. D.7.設(shè)P是橢圓上一點,M、N分別是兩圓:和上的點,則的最小值和最大值分別為(
)A.9,12 B.8,11 C.8,12 D.10,128.橢圓的兩個焦點為是橢圓上一點,且滿足.則橢圓離心率的取值范圍為(
)A. B. C. D.二、多選題9.已知分別是橢圓的左?右焦點,為橢圓上異于長軸端點的動點,則下列結(jié)論正確的是(
)A.的周長為10B.面積的最大值為C.的最小值為1D.橢圓的離心率為10.已知動點到原點與的距離之比為2,動點的軌跡記為,直線,則下列結(jié)論中正確的是(
)A.的方程為B.直線被截得的弦長為C.動點到直線的距離的取值范圍為D.上存在三個點到直線的距離為11.圓和圓的交點為A,B,則()A.公共弦AB所在直線的方程為B.線段AB中垂線方程為C.公共弦AB的長為D.P為圓上一動點,則P到直線AB距離的最大值為12.設(shè)首項為1的數(shù)列的前項和為,已知,則下列結(jié)論正確的是(
)A.?dāng)?shù)列為等比數(shù)列B.?dāng)?shù)列的通項公式為C.?dāng)?shù)列為等比數(shù)列D.?dāng)?shù)列為等比數(shù)列三、填空題13.一個橢圓中心在原點,焦點在軸上,是橢圓上一點,且|PF1|,|F1F2|,|PF2|成等差數(shù)列,則橢圓方程為.14.定義“等和數(shù)列”:在一個數(shù)列中,如果每一項與它后一項的和都為同一個常數(shù),那么這個數(shù)列叫做等和數(shù)列,這個常數(shù)叫做該數(shù)列的公和.已知數(shù)列是等和數(shù)列,且,公和為1,那么這個數(shù)列的前2023項和.15.已知直線與曲線有兩個不同的交點,則實數(shù)的取值范圍是.16.橢圓的左?右焦點分別為,,過焦點的直線交該橢圓于兩點,若的內(nèi)切圓面積為,兩點的坐標(biāo)分別為,,則的面積,的值為.四、解答題17.已知橢圓的離心率,求的值及橢圓的長軸長?焦點坐標(biāo).18.圓心在直線上的圓C,經(jīng)過點,并且與直線相切(1)求圓C的方程;(2)圓C被直線分割成弧長的比值為的兩段弧,求直線l的方程.19.在數(shù)列中,.(1)求的值;(2)是否存在實數(shù),使得數(shù)列為等差數(shù)列?若存在,求出的值;若不存在,請說明理由.20.如圖,已知圓及點.(1)若點在圓上,求直線與圓的相交弦的長度;(2)若是直線上任意一點,過點作圓的切線,切點為,當(dāng)切線長最小時,求點的坐標(biāo),并求出這個最小值.21.已知橢圓的左?右頂點分別為,且,離心率為為坐標(biāo)原點.(1)求橢圓的方程;(2)設(shè)是橢圓上不同于的一點,直線與直線分別交于點.證明:以線段為直徑的圓過橢圓的右焦點.22.已知數(shù)列{an}與{bn}滿足:,若{an}是各項為正數(shù)的等比數(shù)列,且a1=2,b3=b2+4.(1)求數(shù)列{an}與{bn}的通項公式;(2)若數(shù)列{cn}滿足cn=(n∈N*),Tn為數(shù)列{cn}的前n項和,證明:Tn<1.參考答案:1.B2.B3.A4.B5.A6.B7.C8.D9.ABD10.BD11.ABD12.CD13.14.101015.16.6317.,長軸長為,焦點坐標(biāo)為.【詳解】因為,橢圓的焦點在軸上且,又因為,可得,解得,所以橢圓方程為,可得,則所以橢圓的長軸長為?焦點坐標(biāo)為.18.(1)(2)或【詳解】(1)設(shè)圓C的標(biāo)準(zhǔn)方程為,由題意得,解得,所以圓C的方程為;(2)設(shè)直線與圓C交于B?D兩點,過點作,垂足為,因為圓C被直線分割成弧長的比值為的兩段弧,所以,則,即圓心C到直線l的距離為,且,因為直線l的方程為,所以,化簡解得或,故所求直線l的方程為或.19.(1)a2=13,a3=33;(2)存在,-1.【詳解】(1)由題意,,,.(2)假設(shè)存在實數(shù),使得數(shù)列為等差數(shù)列,設(shè),則,所以.此時,,而,則是首項為2,公差為1的等差數(shù)列,即存在實數(shù),使得數(shù)列是以首項為2,公差是1的等差數(shù)列.20.(1)(2),【詳解】(1)易知圓的標(biāo)準(zhǔn)方程為,則,半徑.將點代入圓的方程,得,所以,故直線的斜率.因此直線的方程為,即,所以圓心到直線的距離,所以.(2)因為,所以當(dāng)最小時,最小,又當(dāng)與直線垂直時,最小,所以,所以.由題易得過點且與直線垂直的直線方程為,聯(lián)立,得,所以.21.(1)(2)證明見解析【詳解】(1)由題意知,,得,又離心率,,則橢圓的方程為.(2)由(1)得,
設(shè),則,即.則直線,直線,將代入上述直線方程,可得點的縱坐標(biāo),點的縱坐標(biāo),即,令橢圓的右焦點為,則,則所以,即,所以為直徑的圓過點.22.(1),bn=2n-1(n∈N*);(2)證明見解析.【詳解】(1)由題意知,a1+a2+a3+…+an=2bn,①當(dāng)n≥2時,a1+a2+a3+…+an-1=2bn-1,②①-②可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年花山區(qū)圖書館少兒讀物采購合同
- 2025年度裝配式廠房建造及運營管理合同3篇
- 2025年度農(nóng)業(yè)科技研發(fā)合作合同免責(zé)條款
- 2025年度海洋動物運輸與海洋生態(tài)保護(hù)項目合同
- 2025年度跨境電子商務(wù):國際電商交易合同示范文本
- 2025版物流行業(yè)數(shù)據(jù)采集與供應(yīng)鏈優(yōu)化合同3篇
- 2025年度數(shù)據(jù)中心設(shè)備一次性采購合同書
- 2025中央空調(diào)銷售及安裝合同【范本】
- 合伙做生意合同范本大全4
- 2025年度蘇聯(lián)奶牛場集體承包合同制養(yǎng)殖技術(shù)指導(dǎo)協(xié)議
- 江西省部分學(xué)校2024-2025學(xué)年高三上學(xué)期1月期末英語試題(含解析無聽力音頻有聽力原文)
- 2024年度窯爐施工協(xié)議詳例細(xì)則版B版
- 工程公司總經(jīng)理年終總結(jié)
- 2024年海南省高考地理試卷(含答案)
- 【企業(yè)盈利能力探析的國內(nèi)外文獻(xiàn)綜述2400字】
- 三年級上冊數(shù)學(xué)口算題1000道帶答案
- 蘇教版(2024新版)一年級上冊科學(xué)全冊教案教學(xué)設(shè)計
- 期末綜合測試卷一(試題)-2023-2024學(xué)年一年級下冊數(shù)學(xué)滬教版
- 江西警察學(xué)院治安學(xué)專業(yè)主干課程教學(xué)大綱 文檔
- 醫(yī)美整形銷售培訓(xùn)課件
- 芯片研發(fā)項目計劃表模板
評論
0/150
提交評論