版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024-2025學(xué)年度期中學(xué)情檢測高一數(shù)學(xué)試題一、選擇題1.不等式的解集為()A. B.C D.【答案】D【解析】【分析】當(dāng)時直接得解,當(dāng)時原不等式等價于,再解分式不等式即可.【詳解】不等式,當(dāng)時,不等式顯然成立;當(dāng)時,則原不等式等價于,等價于,解得或,綜上可得原不等式的解集為.故選:D2.設(shè)a,b,m都是正數(shù),且,記,則()A. B.C. D.與的大小與的取值有關(guān)【答案】A【解析】【分析】根據(jù)題意通過作差比較大小,得出的大小關(guān)系,從而判斷出正確答案.【詳解】由,且,即,可得,即,故選:A.3.若集合有6個非空真子集,則實數(shù)的取值范圍為()A. B. C. D.【答案】A【解析】【分析】根據(jù)給定條件,求出集合中元素,再列出不等式求解即得.【詳解】由集合有6個非空真子集,得集合中有3個元素,為,因此,解得,所以實數(shù)的取值范圍為.故選:A4.設(shè),,則下列不等式中正確的是()A. B. C. D.【答案】C【解析】【分析】由冪函數(shù)的單調(diào)性可得A錯誤;由的單調(diào)性可得B錯誤;作差可得C正確,取可得D錯誤;【詳解】對于A,由在上是增函數(shù)可得,故A錯誤;對于B,由在上是減函數(shù)可得,故B錯誤;對于C,,所以,故C正確;對于D,當(dāng)時,,故D錯誤;故選:C.5.命題“對任意,都有”的否定是A.對任意,都有 B.對任意,都有C.存在,使得 D.存在,使得【答案】D【解析】【分析】根據(jù)全稱命題的直接得到其否定命題.【詳解】解:命題“對任意,都有”的否定是存在,使得.故選:D.【點睛】本題考查全稱命題的否定,是基礎(chǔ)題.6.已知集合,則()A. B. C. D.【答案】D【解析】【分析】由一元二次不等式解出集合,再求交集即可;【詳解】因為,所以.故選:D.7.若函數(shù)y=fx的定義域為,值域為,則函數(shù)y=fx的圖像可能是()A. B.C. D.【答案】A【解析】【分析】根據(jù)函數(shù)圖象分析函數(shù)定義域和值域即可判斷.【詳解】選項A,定義域符合、值域也相符,故A正確;選項B,定義域為,值域為,不滿足定義域和值域,故B錯誤;選項C,定義域為,值域為,不滿足定義域,故C錯誤;選項D,根據(jù)函數(shù)定義知,對于每一個都有唯一確定的對應(yīng),故D中圖象不是函數(shù)的圖象,故D錯誤.故選:A.8.已知函數(shù),若,則實數(shù)值等于()A. B. C.1 D.3【答案】A【解析】【分析】首先求得的值,然后分類討論確定實數(shù)a的值即可,需要注意自變量的取值范圍.【詳解】,據(jù)此結(jié)合題意分類討論:當(dāng)時,,由得,解得,舍去;當(dāng)時,,由得,解得,滿足題意.故選:A.二、多項選擇題9.已知實數(shù)滿足,則()A. B. C. D.【答案】ACD【解析】【分析】利用同向不等式的可加性和同向正數(shù)不等式的可乘性來推理,即可得到判斷.【詳解】由,利用同向不等式的可加性得:,故A對,B錯;再由,平方可得:,再利用同向正數(shù)不等式的可乘性得:,故C對;又由,可得:,再利用同向正數(shù)不等式的可乘性得:,兩邊同除以正數(shù)得:,故D對,故選:ACD.10.下列式子中,能使成立的充分條件有()A. B. C. D.【答案】ABD【解析】【分析】根據(jù)不等式性質(zhì),逐個判斷即可得解.【詳解】對A,因為,所以,故A正確,對B,,根據(jù)不等式的性質(zhì)可得:,故B正確對C,由于,所以,故C錯誤,對D,由于,根據(jù)不等式的性質(zhì)可得:,根D正確,故選:ABD.【點睛】本題考查了充分條件的判斷,考查了不等式的性質(zhì),屬于基礎(chǔ)題.11.已知正數(shù)滿足,則下列說法一定正確的是()A. B.C. D.當(dāng)且僅當(dāng)時,取得最小值【答案】ABD【解析】【分析】將變形,根據(jù)基本不等式可求得的最值以及等號取得條件,由此判斷A,D;再將變形為,利用基本不等式求得其最小值,由此判斷B,C.【詳解】由,得,因為,所以,當(dāng)且僅當(dāng),且,即時,等號成立,所以的最小值為9,故項正確;因為,,當(dāng)且僅當(dāng)時,即時取等號,所以,故B項正確,C項不正確,故選:ABD三、填空題12.已知正數(shù)滿足,則的最小值為______.【答案】【解析】【分析】利用基本不等式求最小值.【詳解】由題意可得,故,又,所以,當(dāng)且僅當(dāng),即時取等號.故答案為:.13.滿足關(guān)系的集合有____________個.【答案】4【解析】【分析】由題意可得集合為的子集,且中必包含元素,寫出滿足條件的集合,即可得答案.【詳解】即集合為的子集,且中必包含元素,又因為的含元素的子集為:,共4個.故答案為:4.四、雙空題14.真子集:如果________但________,就說是的真子集,記作,讀作“________”.【答案】①.②.③.真包含于【解析】【分析】略【詳解】略故答案為:A?B;;真包含于五、解答題15.(1)已知實數(shù)滿足,求的取值范圍;(2)已知,,求的取值范圍.【答案】(1);(2)【解析】分析】(1)由,,結(jié)合可加性求解;(2)由,結(jié)合不等式的性質(zhì)求解.【詳解】(1)因為,,所以,所以的取值范圍是.(2)設(shè)則,∴,∴∵,,∴,∴即.16.如圖,動物園要以墻體為背面,用鋼筋網(wǎng)圍成四間具有相同面積的矩形虎籠.(1)現(xiàn)有可圍長鋼筋網(wǎng)的材料,每間虎籠的長、寬各設(shè)計為多少時,可使每間虎籠的面積最大?(2)若每間虎籠的面積為,則每間虎籠的長、寬各設(shè)計為多少時,可使圍成四間虎籠的鋼筋網(wǎng)總長最???【答案】(1)長為,寬為(2)長為,寬為【解析】【分析】(1)設(shè)每間老虎籠的長為,寬為,則每間老虎籠的面積為,可得出,利用基本不等式可求得的最大值,利用等號成立的條件求出、的值,即可得出結(jié)論;(2)設(shè)每間老虎籠的長為,寬為,則,利用基本不等式可求得鋼筋網(wǎng)總長的最小值,利用等號成立的條件求出、的值,即可得出結(jié)論.【小問1詳解】解:設(shè)每間老虎籠的長為,寬為,則每間老虎籠的面積為,由已知可得,由基本不等式可得,當(dāng)且僅當(dāng),即當(dāng)時,等號成立,因此,每間虎籠的長為,寬為時,可使得每間虎籠的面積最大.【小問2詳解】解:設(shè)每間老虎籠的長為,寬為,則,鋼筋網(wǎng)總長為,當(dāng)且僅當(dāng),即當(dāng)時,等號成立,因此,每間虎籠的長為,寬為時,可使圍成四間虎籠的鋼筋網(wǎng)總長最小.17.(1)設(shè),證明:的充要條件為.(2)設(shè),求證:至少有一個為負(fù)數(shù).【答案】(1)證明見解析;(2)證明見解析【解析】【分析】(1)分別證明充分性和必要性即可.(2)方法一:采用反證法,先假設(shè),對兩邊平方并整理,根據(jù)假設(shè)的的范圍分析得到與題干矛盾的結(jié)論,從而假設(shè)錯誤,結(jié)論得證.方法二:采用反證法,先假設(shè),根據(jù)可得,從而得到,相加得到,與題干條件矛盾,從而假設(shè)錯誤,結(jié)論得證.詳解】(1)充分性:若,則,,,,.必要性:若,則,,,.(2)方法一:假設(shè),,,,,,,與矛盾,至少有一個負(fù)數(shù).方法二:假設(shè),,,,,與矛盾,至少有一個為負(fù)數(shù).18.已知函數(shù).(1)若對任意,都有,求實數(shù)a的取值范圍;(2)若對任意滿足的x,都有,求實數(shù)a的取值范圍.【答案】(1)(2)【解析】【分析】(1)根據(jù)一元二次不等式解集的性質(zhì)進(jìn)行求解即可;(2)對不等式進(jìn)行參變量分離,結(jié)合基本不等式進(jìn)行求解即可.【小問1詳解】依題意可得:,解得,所以實數(shù)a的取值范圍為.【小問2詳解】對任意滿足的x,都有,即,又.所以對恒成立,由于,當(dāng)且僅當(dāng)時取等號,即當(dāng)時等號成立.所以,即實數(shù)a的取值范圍為.19.(1)設(shè),求證:,(2)設(shè),求證:,【答案】(1)證明見解析;(2)證明見解析【解析】【分析】(1)方法一:由,利用,對進(jìn)行放縮,即可證明;方法二:由,利用,對進(jìn)行放縮,即可證明;方法三:由,利用,即可證明;方法四:幾何法,構(gòu)造符合題意的幾何圖形;方法五:構(gòu)造一次函數(shù),證明對于,都有即可;(2)方法一:由,利用,即可證明;方法二:由,利用,即可證明;方法三:幾何法,構(gòu)造符合題意的幾何圖形;方法四:構(gòu)造一次函數(shù),,證明對,都有即可.【詳解】(1)方法一:,,,.方法二:,.方法三:,,,即.方法四:幾何法如圖,做邊長為的正方形,分別在邊上分別取點,使得,過做交于,交于,過做交于,交于,直線與交于點,則長方形的面積,長方形的面積,正方形的面積,由圖可知,所以.方法五:設(shè).將看
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)療器械買賣協(xié)議
- 壓力管道檢驗方案
- 污水改造項目施工方案
- 鋼筋混凝土排水管購銷合同書協(xié)議書
- 礦山開采設(shè)備租賃合同
- 消費金融項目合作協(xié)議
- 公司設(shè)備租賃協(xié)議指南
- 商場柜臺按揭協(xié)議模板
- 養(yǎng)老機(jī)構(gòu)保險服務(wù)協(xié)議
- 2024年中國輕質(zhì)墻扳市場調(diào)查研究報告
- 理工學(xué)院大一新生動員大會PPT課件
- 【行業(yè)】電動車動力電池包高清大圖賞析
- 機(jī)械設(shè)備工程工程量清單計價PPT課件
- F1等級砝碼標(biāo)準(zhǔn)報告
- 醫(yī)院物資管理規(guī)定
- 漆黑的魅影5.0二周目圖文攻略
- 土地利用現(xiàn)狀上色標(biāo)準(zhǔn)表
- 超聲波—微波輔助酸浸提純硅藻土的試驗研究
- 康復(fù)醫(yī)學(xué)科治療范圍和收費
- kk 2mw控制系統(tǒng)結(jié)構(gòu)(version 40)
- 最新藥品檢驗收費標(biāo)準(zhǔn)
評論
0/150
提交評論