版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
蚌埠市重點(diǎn)中學(xué)2023-2024學(xué)年高三年級(jí)調(diào)研考試(四)數(shù)學(xué)試題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點(diǎn)()A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度2.已知隨機(jī)變量服從正態(tài)分布,,()A. B. C. D.3.費(fèi)馬素?cái)?shù)是法國(guó)大數(shù)學(xué)家費(fèi)馬命名的,形如的素?cái)?shù)(如:)為費(fèi)馬索數(shù),在不超過30的正偶數(shù)中隨機(jī)選取一數(shù),則它能表示為兩個(gè)不同費(fèi)馬素?cái)?shù)的和的概率是()A. B. C. D.4.計(jì)算等于()A. B. C. D.5.函數(shù)的部分圖像大致為()A. B.C. D.6.設(shè)全集,集合,,則集合()A. B. C. D.7.已知滿足,則()A. B. C. D.8.我國(guó)古代數(shù)學(xué)家秦九韶在《數(shù)書九章》中記述了“三斜求積術(shù)”,用現(xiàn)代式子表示即為:在中,角所對(duì)的邊分別為,則的面積.根據(jù)此公式,若,且,則的面積為()A. B. C. D.9.已知雙曲線:的左、右兩個(gè)焦點(diǎn)分別為,,若存在點(diǎn)滿足,則該雙曲線的離心率為()A.2 B. C. D.510.已知集合,,且、都是全集(為實(shí)數(shù)集)的子集,則如圖所示韋恩圖中陰影部分所表示的集合為()A. B.或C. D.11.已知在平面直角坐標(biāo)系中,圓:與圓:交于,兩點(diǎn),若,則實(shí)數(shù)的值為()A.1 B.2 C.-1 D.-212.已知向量,(其中為實(shí)數(shù)),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.在中,、的坐標(biāo)分別為,,且滿足,為坐標(biāo)原點(diǎn),若點(diǎn)的坐標(biāo)為,則的取值范圍為__________.14.已知雙曲線C:()的左、右焦點(diǎn)為,,為雙曲線C上一點(diǎn),且,若線段與雙曲線C交于另一點(diǎn)A,則的面積為______.15.在中,角的平分線交于,,,則面積的最大值為__________.16.已知函數(shù),若,則實(shí)數(shù)的取值范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),判斷在上的單調(diào)性并加以證明;(2)若,,求的取值范圍.18.(12分)已知△ABC三內(nèi)角A、B、C所對(duì)邊的長(zhǎng)分別為a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.(1)求cosC的值;(2)若a=3,c,求△ABC的面積.19.(12分)在平面四邊形中,已知,.(1)若,求的面積;(2)若求的長(zhǎng).20.(12分)某校為了解校園安全教育系列活動(dòng)的成效,對(duì)全校學(xué)生進(jìn)行一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定“合格”、“不合格”兩個(gè)等級(jí),同時(shí)對(duì)相應(yīng)等級(jí)進(jìn)行量化:“合格”記分,“不合格”記分.現(xiàn)隨機(jī)抽取部分學(xué)生的成績(jī),統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如下所示:等級(jí)不合格合格得分頻數(shù)624(Ⅰ)若測(cè)試的同學(xué)中,分?jǐn)?shù)段內(nèi)女生的人數(shù)分別為,完成列聯(lián)表,并判斷:是否有以上的把握認(rèn)為性別與安全意識(shí)有關(guān)?是否合格性別不合格合格總計(jì)男生女生總計(jì)(Ⅱ)用分層抽樣的方法,從評(píng)定等級(jí)為“合格”和“不合格”的學(xué)生中,共選取人進(jìn)行座談,現(xiàn)再?gòu)倪@人中任選人,記所選人的量化總分為,求的分布列及數(shù)學(xué)期望;(Ⅲ)某評(píng)估機(jī)構(gòu)以指標(biāo)(,其中表示的方差)來評(píng)估該校安全教育活動(dòng)的成效,若,則認(rèn)定教育活動(dòng)是有效的;否則認(rèn)定教育活動(dòng)無效,應(yīng)調(diào)整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應(yīng)調(diào)整安全教育方案?附表及公式:,其中.21.(12分)設(shè)函數(shù).(1)求的值;(2)若,求函數(shù)的單調(diào)遞減區(qū)間.22.(10分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)若,求曲線與的交點(diǎn)坐標(biāo);(2)過曲線上任意一點(diǎn)作與夾角為45°的直線,交于點(diǎn),且的最大值為,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
通過變形,通過“左加右減”即可得到答案.【詳解】根據(jù)題意,故只需把函數(shù)的圖象上所有的點(diǎn)向右平移個(gè)單位長(zhǎng)度可得到函數(shù)的圖象,故答案為D.【點(diǎn)睛】本題主要考查三角函數(shù)的平移變換,難度不大.2、B【解析】
利用正態(tài)分布密度曲線的對(duì)稱性可得出,進(jìn)而可得出結(jié)果.【詳解】,所以,.故選:B.【點(diǎn)睛】本題考查利用正態(tài)分布密度曲線的對(duì)稱性求概率,屬于基礎(chǔ)題.3、B【解析】
基本事件總數(shù),能表示為兩個(gè)不同費(fèi)馬素?cái)?shù)的和只有,,,共有個(gè),根據(jù)古典概型求出概率.【詳解】在不超過的正偶數(shù)中隨機(jī)選取一數(shù),基本事件總數(shù)能表示為兩個(gè)不同費(fèi)馬素?cái)?shù)的和的只有,,,共有個(gè)則它能表示為兩個(gè)不同費(fèi)馬素?cái)?shù)的和的概率是本題正確選項(xiàng):【點(diǎn)睛】本題考查概率的求法,考查列舉法解決古典概型問題,是基礎(chǔ)題.4、A【解析】
利用誘導(dǎo)公式、特殊角的三角函數(shù)值,結(jié)合對(duì)數(shù)運(yùn)算,求得所求表達(dá)式的值.【詳解】原式.故選:A【點(diǎn)睛】本小題主要考查誘導(dǎo)公式,考查對(duì)數(shù)運(yùn)算,屬于基礎(chǔ)題.5、A【解析】
根據(jù)函數(shù)解析式,可知的定義域?yàn)椋ㄟ^定義法判斷函數(shù)的奇偶性,得出,則為偶函數(shù),可排除選項(xiàng),觀察選項(xiàng)的圖象,可知代入,解得,排除選項(xiàng),即可得出答案.【詳解】解:因?yàn)?,所以的定義域?yàn)椋瑒t,∴為偶函數(shù),圖象關(guān)于軸對(duì)稱,排除選項(xiàng),且當(dāng)時(shí),,排除選項(xiàng),所以正確.故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式識(shí)別函數(shù)圖象,利用函數(shù)的奇偶性和特殊值法進(jìn)行排除.6、C【解析】∵集合,,∴點(diǎn)睛:本題是道易錯(cuò)題,看清所問問題求并集而不是交集.7、A【解析】
利用兩角和與差的余弦公式展開計(jì)算可得結(jié)果.【詳解】,.故選:A.【點(diǎn)睛】本題考查三角求值,涉及兩角和與差的余弦公式的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.8、A【解析】
根據(jù),利用正弦定理邊化為角得,整理為,根據(jù),得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因?yàn)?,所以,由余弦定理,所以,由的面積公式得故選:A【點(diǎn)睛】本題主要考查正弦定理和余弦定理以及類比推理,還考查了運(yùn)算求解的能力,屬于中檔題.9、B【解析】
利用雙曲線的定義和條件中的比例關(guān)系可求.【詳解】.選B.【點(diǎn)睛】本題主要考查雙曲線的定義及離心率,離心率求解時(shí),一般是把已知條件,轉(zhuǎn)化為a,b,c的關(guān)系式.10、C【解析】
根據(jù)韋恩圖可確定所表示集合為,根據(jù)一元二次不等式解法和定義域的求法可求得集合,根據(jù)補(bǔ)集和交集定義可求得結(jié)果.【詳解】由韋恩圖可知:陰影部分表示,,,.故選:.【點(diǎn)睛】本題考查集合運(yùn)算中的補(bǔ)集和交集運(yùn)算,涉及到一元二次不等式和函數(shù)定義域的求解;關(guān)鍵是能夠根據(jù)韋恩圖確定所求集合.11、D【解析】
由可得,O在AB的中垂線上,結(jié)合圓的性質(zhì)可知O在兩個(gè)圓心的連線上,從而可求.【詳解】因?yàn)椋設(shè)在AB的中垂線上,即O在兩個(gè)圓心的連線上,,,三點(diǎn)共線,所以,得,故選D.【點(diǎn)睛】本題主要考查圓的性質(zhì)應(yīng)用,幾何性質(zhì)的轉(zhuǎn)化是求解的捷徑.12、A【解析】
結(jié)合向量垂直的坐標(biāo)表示,將兩個(gè)條件相互推導(dǎo),根據(jù)能否推導(dǎo)的情況判斷出充分、必要條件.【詳解】由,則,所以;而當(dāng),則,解得或.所以“”是“”的充分不必要條件.故選:A【點(diǎn)睛】本小題考查平面向量的運(yùn)算,向量垂直,充要條件等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,應(yīng)用意識(shí).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由正弦定理可得點(diǎn)在曲線上,設(shè),則,將代入可得,利用二次函數(shù)的性質(zhì)可得范圍.【詳解】解:由正弦定理得,則點(diǎn)在曲線上,設(shè),則,,又,,因?yàn)?,則,即的取值范圍為.故答案為:.【點(diǎn)睛】本題考查雙曲線的定義,考查向量數(shù)量積的坐標(biāo)運(yùn)算,考查學(xué)生計(jì)算能力,有一定的綜合性,但難度不大.14、【解析】
由已知得即,,可解得,由在雙曲線C上,代入即可求得雙曲線方程,然后求得直線的方程與雙曲線方程聯(lián)立求得點(diǎn)A坐標(biāo),借助,即可解得所求.【詳解】由已知得,又,,所以,解得或,由在雙曲線C上,所以或,所以或(舍去),因此雙曲線C的方程為.又,所以線段的方程為,與雙曲線C的方程聯(lián)立消去x整理得,所以,,所以點(diǎn)A坐標(biāo)為,所以.【點(diǎn)睛】本題主要考查直線與雙曲線的位置關(guān)系,考查雙曲線方程的求解,考查求三角形面積,考查學(xué)生的計(jì)算能力,難度較難.15、15【解析】
由角平分線定理得,利用余弦定理和三角形面積公式,借助三角恒等變化求出面積的最大值.【詳解】畫出圖形:因?yàn)?,,由角平分線定理得,設(shè),則由余弦定理得:即當(dāng)且僅當(dāng),即時(shí)取等號(hào)所以面積的最大值為15故答案為:15【點(diǎn)睛】此題考查解三角形面積的最值問題,通過三角恒等變形后利用均值不等式處理,屬于一般性題目.16、【解析】
畫圖分析可得函數(shù)是偶函數(shù),且在上單調(diào)遞減,利用偶函數(shù)性質(zhì)和單調(diào)性可解.【詳解】作出函數(shù)的圖如下所示,觀察可知,函數(shù)為偶函數(shù),且在上單調(diào)遞增,在上單調(diào)遞減,故,故實(shí)數(shù)的取值范圍為.故答案為:【點(diǎn)睛】本題考查利用函數(shù)奇偶性及單調(diào)性解不等式.函數(shù)奇偶性的常用結(jié)論:(1)如果函數(shù)是偶函數(shù),那么.(2)奇函數(shù)在兩個(gè)對(duì)稱的區(qū)間上具有相同的單調(diào)性;偶函數(shù)在兩個(gè)對(duì)稱的區(qū)間上具有相反的單調(diào)性.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)在為增函數(shù);證明見解析(2)【解析】
(1)令,求出,可推得,故在為增函數(shù);(2)令,則,由此利用分類討論思想和導(dǎo)數(shù)性質(zhì)求出實(shí)數(shù)的取值范圍.【詳解】(1)當(dāng)時(shí),.記,則,當(dāng)時(shí),,.所以,所以在單調(diào)遞增,所以.因?yàn)椋?,所以在為增函?shù).(2)由題意,得,記,則,令,則,當(dāng)時(shí),,,所以,所以在為增函數(shù),即在單調(diào)遞增,所以.①當(dāng),,恒成立,所以為增函數(shù),即在單調(diào)遞增,又,所以,所以在為增函數(shù),所以所以滿足題意.②當(dāng),,令,,因?yàn)?,所以,故在單調(diào)遞增,故,即.故,又在單調(diào)遞增,由零點(diǎn)存在性定理知,存在唯一實(shí)數(shù),,當(dāng)時(shí),,單調(diào)遞減,即單調(diào)遞減,所以,此時(shí)在為減函數(shù),所以,不合題意,應(yīng)舍去.綜上所述,的取值范圍是.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的綜合應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值和零點(diǎn)及不等式恒成立等問題,考查化歸與轉(zhuǎn)化思想、分類與整合思想、函數(shù)與方程思想,考查了學(xué)生的邏輯推理和運(yùn)算求解能力,屬于難題.18、(1);(2)或.【解析】
(1)利用正弦定理對(duì)已知代數(shù)式化簡(jiǎn),根據(jù)余弦定理求解余弦值;(2)根據(jù)余弦定理求出b=1或b=3,結(jié)合面積公式求解.【詳解】(1)已知等式3sin2A+3sin2B=4sinAsinB+3sin2C,利用正弦定理化簡(jiǎn)得:3a2+3b2﹣3c2=4ab,即a2+b2﹣c2ab,∴cosC;(2)把a(bǔ)=3,c,代入3a2+3b2﹣3c2=4ab得:b=1或b=3,∵cosC,C為三角形內(nèi)角,∴sinC,∴S△ABCabsinC3×bb,則△ABC的面積為或.【點(diǎn)睛】此題考查利用正余弦定理求解三角形,關(guān)鍵在于熟練掌握正弦定理進(jìn)行邊角互化,利用余弦定理求解邊長(zhǎng),根據(jù)面積公式求解面積.19、(1);(2).【解析】
(1)在三角形中,利用余弦定理列方程,解方程求得的長(zhǎng),進(jìn)而由三角形的面積公式求得三角形的面積.(2)利用誘導(dǎo)公式求得,進(jìn)而求得,利用兩角差的正弦公式,求得,在三角形中利用正弦定理求得,在三角形中利用余弦定理求得的長(zhǎng).【詳解】(1)在中,,解得,.(2)在中,,..【點(diǎn)睛】本小題主要考查正弦定理、余弦定理解三角形,考查三角形的面積公式,屬于中檔題.20、(Ⅰ)詳見解析;(Ⅱ)詳見解析;(Ⅲ)不需要調(diào)整安全教育方案.【解析】
(I)根據(jù)題目所給數(shù)據(jù)填寫好列聯(lián)表,計(jì)算出的值,由此判斷出在犯錯(cuò)誤概率不超過的前提下,不能認(rèn)為性別與安全測(cè)試是否合格有關(guān).(II)利用超幾何分布的計(jì)算公式,計(jì)算出的分布列并求得數(shù)學(xué)期望.(III)由(II)中數(shù)據(jù),計(jì)算出,進(jìn)而求得的值,從而得出該校的安全教育活動(dòng)是有效的,不需要調(diào)整安全教育方案.【詳解】解:(Ⅰ)由頻率分布直方圖可知,得分在的頻率為,故抽取的學(xué)生答卷總數(shù)為,.性別與合格情況的列聯(lián)表為:是否合格性別不合格合格小計(jì)男生女生小計(jì)即在犯錯(cuò)誤概率不超過的前提下,不能認(rèn)為性別與安全測(cè)試是否合格有關(guān).(Ⅱ)“不合格”和“合格”的人數(shù)比例為,因此抽取的人
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《家庭護(hù)士》課件
- 2023-2024學(xué)年福建省福州市福清市高一(下)期中地理試卷
- 高速公路施工總承包合同段春節(jié)節(jié)后復(fù)工工作計(jì)劃及保障措施
- 2024年山東省日照市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2024年福建省福州市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2024年四川省眉山市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2021年貴州省安順市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 湖南省張家界市(2024年-2025年小學(xué)六年級(jí)語(yǔ)文)部編版摸底考試(上學(xué)期)試卷及答案
- 2024年ATM機(jī)項(xiàng)目資金需求報(bào)告代可行性研究報(bào)告
- 2025年P(guān)S鋁合金板項(xiàng)目立項(xiàng)申請(qǐng)報(bào)告模板
- 精品資料(2021-2022年收藏)集團(tuán)各控股子公司董事會(huì)議事規(guī)則
- t-橋式起重機(jī)設(shè)計(jì)計(jì)算書
- 全口義齒印模及頜位關(guān)系記錄ppt課件
- 定點(diǎn)洗車協(xié)議書(共2頁(yè))
- 電除塵器計(jì)算
- 桿塔選型(高度、形式、基礎(chǔ))
- Q∕CR 9213-2017 鐵路架橋機(jī)架梁技術(shù)規(guī)程
- 加油站消防設(shè)計(jì)文件(范例)
- 上海某建筑工程施工現(xiàn)場(chǎng)臨建板房搭設(shè)方案(附示意圖)
- 中越文勞動(dòng)合同樣本
- 施工干擾措施
評(píng)論
0/150
提交評(píng)論