版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
遼寧省營(yíng)口大石橋市石佛中學(xué)2024年中考三模數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,矩形ABCD中,E為DC的中點(diǎn),AD:AB=:2,CP:BP=1:2,連接EP并延長(zhǎng),交AB的延長(zhǎng)線于點(diǎn)F,AP、BE相交于點(diǎn)O.下列結(jié)論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④2.下列計(jì)算正確的是()A.x4?x4=x16B.(a+b)2=a2+b2C.16=±4D.(a6)2÷(a4)3=13.如圖,矩形ABCD中,AD=2,AB=3,過(guò)點(diǎn)A,C作相距為2的平行線段AE,CF,分別交CD,AB于點(diǎn)E,F(xiàn),則DE的長(zhǎng)是()A. B. C.1 D.4.不等式組的解集是()A.x>﹣1 B.x≤2 C.﹣1<x<2 D.﹣1<x≤25.甲隊(duì)修路120m與乙隊(duì)修路100m所用天數(shù)相同,已知甲隊(duì)比乙隊(duì)每天多修10m,設(shè)甲隊(duì)每天修路xm.依題意,下面所列方程正確的是A.B. C.D.6.如圖,每個(gè)小正方形的邊長(zhǎng)均為1,則下列圖形中的三角形(陰影部分)與相似的是()A. B.C. D.7.3月22日,美國(guó)宣布將對(duì)約600億美元進(jìn)口自中國(guó)的商品加征關(guān)稅,中國(guó)商務(wù)部隨即公布擬對(duì)約30億美元自美進(jìn)口商品加征關(guān)稅,并表示,中國(guó)不希望打貿(mào)易戰(zhàn),但絕不懼怕貿(mào)易戰(zhàn),有信心,有能力應(yīng)對(duì)任何挑戰(zhàn).將數(shù)據(jù)30億用科學(xué)記數(shù)法表示為()A.3×109 B.3×108 C.30×108 D.0.3×10108.在中,,,,則的值是()A. B. C. D.9.學(xué)習(xí)全等三角形時(shí),數(shù)學(xué)興趣小組設(shè)計(jì)并組織了“生活中的全等”的比賽,全班同學(xué)的比賽結(jié)果統(tǒng)計(jì)如下表:得分(分)60708090100人數(shù)(人)7121083則得分的眾數(shù)和中位數(shù)分別為()A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分10.下列圖形中,既是中心對(duì)稱,又是軸對(duì)稱的是()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,PA,PB是⊙O是切線,A,B為切點(diǎn),AC是⊙O的直徑,若∠P=46°,則∠BAC=▲度.12.在函數(shù)中,自變量x的取值范圍是_________.13.若一個(gè)正n邊形的每個(gè)內(nèi)角為144°,則這個(gè)正n邊形的所有對(duì)角線的條數(shù)是_________.14.如果一個(gè)三角形有一條邊上的高等于這條邊的一半,那么我們把這個(gè)三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜邊AB=5,則它的周長(zhǎng)等于_____.15.如圖,在△ACB中,∠ACB=90°,點(diǎn)D為AB的中點(diǎn),將△ACB繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),當(dāng)CB經(jīng)過(guò)點(diǎn)D時(shí)得到△A1CB1.若AC=6,BC=8,則DB1的長(zhǎng)為_(kāi)_______.16.將一個(gè)含45°角的三角板,如圖擺放在平面直角坐標(biāo)系中,將其繞點(diǎn)順時(shí)針旋轉(zhuǎn)75°,點(diǎn)的對(duì)應(yīng)點(diǎn)恰好落在軸上,若點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為_(kāi)___________.三、解答題(共8題,共72分)17.(8分)為了解某市市民上班時(shí)常用交通工具的狀況,某課題小組隨機(jī)調(diào)查了部分市民(問(wèn)卷調(diào)查表如表所示),并根據(jù)調(diào)查結(jié)果繪制了如圖所示的尚不完整的統(tǒng)計(jì)圖:根據(jù)以上統(tǒng)計(jì)圖,解答下列問(wèn)題:本次接受調(diào)查的市民共有人;扇形統(tǒng)計(jì)圖中,扇形B的圓心角度數(shù)是;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;若該市“上班族”約有15萬(wàn)人,請(qǐng)估計(jì)乘公交車上班的人數(shù).18.(8分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,點(diǎn)D是射線CB上的一個(gè)動(dòng)點(diǎn),△ADE是等邊三角形,點(diǎn)F是AB的中點(diǎn),連接EF.(1)如圖,點(diǎn)D在線段CB上時(shí),①求證:△AEF≌△ADC;②連接BE,設(shè)線段CD=x,BE=y,求y2﹣x2的值;(2)當(dāng)∠DAB=15°時(shí),求△ADE的面積.19.(8分)某校為了解本校九年級(jí)男生體育測(cè)試中跳繩成績(jī)的情況,隨機(jī)抽取該校九年級(jí)若干名男生,調(diào)查他們的跳繩成績(jī)(次/分),按成績(jī)分成,,,,五個(gè)等級(jí).將所得數(shù)據(jù)繪制成如下統(tǒng)計(jì)圖.根據(jù)圖中信息,解答下列問(wèn)題:該校被抽取的男生跳繩成績(jī)頻數(shù)分布直方圖(1)本次調(diào)查中,男生的跳繩成績(jī)的中位數(shù)在________等級(jí);(2)若該校九年級(jí)共有男生400人,估計(jì)該校九年級(jí)男生跳繩成績(jī)是等級(jí)的人數(shù).20.(8分)如圖,將矩形紙片ABCD沿對(duì)角線BD折疊,使點(diǎn)A落在平面上的F點(diǎn)處,DF交BC于點(diǎn)E.(1)求證:△DCE≌△BFE;(2)若AB=4,tan∠ADB=,求折疊后重疊部分的面積.21.(8分)如圖1,經(jīng)過(guò)原點(diǎn)O的拋物線y=ax2+bx(a≠0)與x軸交于另一點(diǎn)A(,0),在第一象限內(nèi)與直線y=x交于點(diǎn)B(2,t).(1)求這條拋物線的表達(dá)式;(2)在第四象限內(nèi)的拋物線上有一點(diǎn)C,滿足以B,O,C為頂點(diǎn)的三角形的面積為2,求點(diǎn)C的坐標(biāo);(3)如圖2,若點(diǎn)M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點(diǎn)P,使得△POC∽△MOB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.22.(10分)如圖,內(nèi)接于,,的延長(zhǎng)線交于點(diǎn).(1)求證:平分;(2)若,,求和的長(zhǎng).23.(12分)(1)計(jì)算:()﹣1+﹣(π﹣2018)0﹣4cos30°(2)解不等式組:,并把它的解集在數(shù)軸上表示出來(lái).24.解不等式組請(qǐng)結(jié)合題意填空,完成本題的解答:(I)解不等式(1),得;(II)解不等式(2),得;(III)把不等式(1)和(2)的解集在數(shù)軸上表示出來(lái):(IV)原不等式組的解集為.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
由條件設(shè)AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),則∠CEP=∠BEP,運(yùn)用勾股定理及三角函數(shù)值就可以求出就可以求出BF、EF的值,從而可以求出結(jié)論.【詳解】解:設(shè)AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點(diǎn),∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過(guò)點(diǎn)E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯(cuò)誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【點(diǎn)睛】本題考查了矩形的性質(zhì)的運(yùn)用,相似三角形的判定及性質(zhì)的運(yùn)用,特殊角的正切值的運(yùn)用,勾股定理的運(yùn)用及直角三角形的性質(zhì)的運(yùn)用,解答時(shí)根據(jù)比例關(guān)系設(shè)出未知數(shù)表示出線段的長(zhǎng)度是關(guān)鍵.2、D【解析】試題分析:x4x4=x8(同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加);(a+b)2=a2+b2+2ab(完全平方公式);(表示16的算術(shù)平方根取正號(hào));(a6)考點(diǎn):1、冪的運(yùn)算;2、完全平方公式;3、算術(shù)平方根.3、D【解析】
過(guò)F作FH⊥AE于H,根據(jù)矩形的性質(zhì)得到AB=CD,AB//CD,推出四邊形AECF是平行四邊形,根據(jù)平行四邊形的性質(zhì)得到AF=CE,根據(jù)相似三角形的性質(zhì)得到,于是得到AE=AF,列方程即可得到結(jié)論.【詳解】解:如圖:解:過(guò)F作FH⊥AE于H,四邊形ABCD是矩形,AB=CD,AB∥CD,AE//CF,四邊形AECF是平行四邊形,AF=CE,DE=BF,AF=3-DE,AE=,∠FHA=∠D=∠DAF=,∠AFH+∠HAF=∠DAE+∠FAH=90,∠DAE=∠AFH,△ADE~△AFH,AE=AF,,DE=,故選D.【點(diǎn)睛】本題主要考查平行四邊形的性質(zhì)及三角形相似,做合適的輔助線是解本題的關(guān)鍵.4、D【解析】由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式組的解集為﹣1<x≤2,故選D5、A【解析】分析:甲隊(duì)每天修路xm,則乙隊(duì)每天修(x-10)m,因?yàn)榧?、乙兩?duì)所用的天數(shù)相同,所以,。故選A。6、B【解析】
根據(jù)相似三角形的判定方法一一判斷即可.【詳解】解:因?yàn)橹杏幸粋€(gè)角是135°,選項(xiàng)中,有135°角的三角形只有B,且滿足兩邊成比例夾角相等,故選:B.【點(diǎn)睛】本題考查相似三角形的性質(zhì),解題的關(guān)鍵是學(xué)會(huì)利用數(shù)形結(jié)合的思想解決問(wèn)題,屬于中考??碱}型.7、A【解析】
科學(xué)記數(shù)法的表示形式為的形式,其中,n為整數(shù)確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同當(dāng)原數(shù)絕對(duì)值時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值時(shí),n是負(fù)數(shù).【詳解】將數(shù)據(jù)30億用科學(xué)記數(shù)法表示為,故選A.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法科學(xué)記數(shù)法的表示形式為的形式,其中,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.8、D【解析】
首先根據(jù)勾股定理求得AC的長(zhǎng),然后利用正弦函數(shù)的定義即可求解.【詳解】∵∠C=90°,BC=1,AB=4,
∴,∴,故選:D.【點(diǎn)睛】本題考查了三角函數(shù)的定義,求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,轉(zhuǎn)化成直角三角形的邊長(zhǎng)的比.9、C【解析】
解:根據(jù)表格中的數(shù)據(jù),可知70出現(xiàn)的次數(shù)最多,可知其眾數(shù)為70分;把數(shù)據(jù)按從小到大排列,可知其中間的兩個(gè)的平均數(shù)為80分,故中位數(shù)為80分.故選C.【點(diǎn)睛】本題考查數(shù)據(jù)分析.10、C【解析】
根據(jù)中心對(duì)稱圖形,軸對(duì)稱圖形的定義進(jìn)行判斷.【詳解】A、是中心對(duì)稱圖形,不是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;B、不是中心對(duì)稱圖形,也不是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;C、既是中心對(duì)稱圖形,又是軸對(duì)稱圖形,故本選項(xiàng)正確;D、不是中心對(duì)稱圖形,是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤.故選C.【點(diǎn)睛】本題考查了中心對(duì)稱圖形,軸對(duì)稱圖形的判斷.關(guān)鍵是根據(jù)圖形自身的對(duì)稱性進(jìn)行判斷.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1.【解析】
由PA、PB是圓O的切線,根據(jù)切線長(zhǎng)定理得到PA=PB,即三角形APB為等腰三角形,由頂角的度數(shù),利用三角形的內(nèi)角和定理求出底角的度數(shù),再由AP為圓O的切線,得到OA與AP垂直,根據(jù)垂直的定義得到∠OAP為直角,再由∠OAP-∠PAB即可求出∠BAC的度數(shù)【詳解】∵PA,PB是⊙O是切線,∴PA=PB.又∵∠P=46°,∴∠PAB=∠PBA=.又∵PA是⊙O是切線,AO為半徑,∴OA⊥AP.∴∠OAP=90°.∴∠BAC=∠OAP﹣∠PAB=90°﹣67°=1°.故答案為:1【點(diǎn)睛】此題考查了切線的性質(zhì),切線長(zhǎng)定理,等腰三角形的性質(zhì),以及三角形的內(nèi)角和定理,熟練掌握定理及性質(zhì)是解本題的關(guān)鍵.12、x≤1且x≠﹣1【解析】試題分析:根據(jù)二次根式有意義,分式有意義得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案為x≤1且x≠﹣1.考點(diǎn):函數(shù)自變量的取值范圍;分式有意義的條件;二次根式有意義的條件.13、2【解析】
由正n邊形的每個(gè)內(nèi)角為144°結(jié)合多邊形內(nèi)角和公式,即可得出關(guān)于n的一元一次方程,解方程即可求出n的值,將其代入中即可得出結(jié)論.【詳解】∵一個(gè)正n邊形的每個(gè)內(nèi)角為144°,
∴144n=180×(n-2),解得:n=1.
這個(gè)正n邊形的所有對(duì)角線的條數(shù)是:==2.
故答案為2.【點(diǎn)睛】本題考查了多邊形的內(nèi)角以及多邊形的對(duì)角線,解題的關(guān)鍵是求出正n邊形的邊數(shù).本題屬于基礎(chǔ)題,難度不大,解決該題型題目時(shí),根據(jù)多邊形的內(nèi)角和公式求出多邊形邊的條數(shù)是關(guān)鍵.14、5+3或5+5.【解析】
分兩種情況討論:①Rt△ABC中,CD⊥AB,CD=AB=;②Rt△ABC中,AC=BC,分別依據(jù)勾股定理和三角形的面積公式,即可得到該三角形的周長(zhǎng)為5+3或5+5.【詳解】由題意可知,存在以下兩種情況:(1)當(dāng)一條直角邊是另一條直角邊的一半時(shí),這個(gè)直角三角形是半高三角形,此時(shí)設(shè)較短的直角邊為a,則較長(zhǎng)的直角邊為2a,由勾股定理可得:,解得:,∴此時(shí)較短的直角邊為,較長(zhǎng)的直角邊為,∴此時(shí)直角三角形的周長(zhǎng)為:;(2)當(dāng)斜邊上的高是斜邊的一半是,這個(gè)直角三角形是半高三角形,此時(shí)設(shè)兩直角邊分別為x、y,這有題意可得:①,②S△=,∴③,由①+③得:,即,∴,∴此時(shí)這個(gè)直角三角形的周長(zhǎng)為:.綜上所述,這個(gè)半高直角三角形的周長(zhǎng)為:或.故答案為或.【點(diǎn)睛】(1)讀懂題意,弄清“半高三角形”的含義是解題的基礎(chǔ);(2)根據(jù)題意,若直角三角形是“半高三角形”,則存在兩種情況:①一條直角邊是另一條直角邊的一半;②斜邊上的高是斜邊的一半;解題時(shí)這兩種情況都要討論,不要忽略了其中一種.15、2【解析】
根據(jù)勾股定理可以得出AB的長(zhǎng)度,從而得知CD的長(zhǎng)度,再根據(jù)旋轉(zhuǎn)的性質(zhì)可知BC=B1C,從而可以得出答案.【詳解】∵在△ACB中,∠ACB=90°,AC=6,BC=8,∴,∵點(diǎn)D為AB的中點(diǎn),∴,∵將△ACB繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),當(dāng)CB經(jīng)過(guò)點(diǎn)D時(shí)得到△A1CB1.∴CB1=BC=8,∴DB1=CB1-CD=8﹣5=2,故答案為:2.【點(diǎn)睛】本題考查的是勾股定理、直角三角形斜邊中點(diǎn)的性質(zhì)和旋轉(zhuǎn)的性質(zhì),能夠根據(jù)勾股定理求出AB的長(zhǎng)是解題的關(guān)鍵.16、【解析】
先求得∠ACO=60°,得出∠OAC=30°,求得AC=2OC=2,解等腰直角三角形求得直角邊為,從而求出B′的坐標(biāo).【詳解】解:∵∠ACB=45°,∠BCB′=75°,
∴∠ACB′=120°,
∴∠ACO=60°,
∴∠OAC=30°,
∴AC=2OC,
∵點(diǎn)C的坐標(biāo)為(1,0),
∴OC=1,
∴AC=2OC=2,
∵△ABC是等腰直角三角形,∴B′點(diǎn)的坐標(biāo)為【點(diǎn)睛】此題主要考查了旋轉(zhuǎn)的性質(zhì)及坐標(biāo)與圖形變換,同時(shí)也利用了直角三角形性質(zhì),首先利用直角三角形的性質(zhì)得到有關(guān)線段的長(zhǎng)度,即可解決問(wèn)題.三、解答題(共8題,共72分)17、(1)1;(2)43.2°;(3)條形統(tǒng)計(jì)圖如圖所示:見(jiàn)解析;(4)估計(jì)乘公交車上班的人數(shù)為6萬(wàn)人.【解析】
(1)根據(jù)D組人數(shù)以及百分比計(jì)算即可.(2)根據(jù)圓心角度數(shù)=360°×百分比計(jì)算即可.(3)求出A,C兩組人數(shù)畫(huà)出條形圖即可.(4)利用樣本估計(jì)總體的思想解決問(wèn)題即可.【詳解】(1)本次接受調(diào)查的市民共有:50÷25%=1(人),故答案為1.(2)扇形統(tǒng)計(jì)圖中,扇形B的圓心角度數(shù)=360°×=43.2°;故答案為:43.2°(3)C組人數(shù)=1×40%=80(人),A組人數(shù)=1﹣24﹣80﹣50﹣16=30(人).條形統(tǒng)計(jì)圖如圖所示:(4)15×40%=6(萬(wàn)人).答:估計(jì)乘公交車上班的人數(shù)為6萬(wàn)人.【點(diǎn)睛】本題考查條形統(tǒng)計(jì)圖,扇形統(tǒng)計(jì)圖,樣本估計(jì)總體等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.18、(1)①證明見(jiàn)解析;②25;(2)為或50+1.【解析】
(1)①在直角三角形ABC中,由30°所對(duì)的直角邊等于斜邊的一半求出AC的長(zhǎng),再由F為AB中點(diǎn),得到AC=AF=5,確定出三角形ADE為等邊三角形,利用等式的性質(zhì)得到一對(duì)角相等,再由AD=AE,利用SAS即可得證;②由全等三角形對(duì)應(yīng)角相等得到∠AEF為直角,EF=CD=x,在三角形AEF中,利用勾股定理即可列出y關(guān)于x的函數(shù)解析式;(2)分兩種情況考慮:①當(dāng)點(diǎn)在線段CB上時(shí);②當(dāng)點(diǎn)在線段CB的延長(zhǎng)線上時(shí),分別求出三角形ADE面積即可.【詳解】(1)、①證明:在Rt△ABC中,∵∠B=30°,AB=10,∴∠CAB=60°,AC=AB=5,∵點(diǎn)F是AB的中點(diǎn),∴AF=AB=5,∴AC=AF,∵△ADE是等邊三角形,∴AD=AE,∠EAD=60°,∵∠CAB=∠EAD,即∠CAD+∠DAB=∠FAE+∠DAB,∴∠CAD=∠FAE,∴△AEF≌△ADC(SAS);②∵△AEF≌△ADC,∴∠AEF=∠C=90°,EF=CD=x,又∵點(diǎn)F是AB的中點(diǎn),∴AE=BE=y,在Rt△AEF中,勾股定理可得:y2=25+x2,∴y2﹣x2=25.(2)①當(dāng)點(diǎn)在線段CB上時(shí),由∠DAB=15°,可得∠CAD=45°,△ADC是等腰直角三角形,∴AD2=50,△ADE的面積為;②當(dāng)點(diǎn)在線段CB的延長(zhǎng)線上時(shí),由∠DAB=15°,可得∠ADB=15°,BD=BA=10,∴在Rt△ACD中,勾股定理可得AD2=200+100,綜上所述,△ADE的面積為或.【點(diǎn)睛】此題考查了勾股定理,全等三角形的判定與性質(zhì),以及等邊三角形的性質(zhì),熟練掌握勾股定理是解本題的關(guān)鍵.19、(1)C;(2)100【解析】
(1)根據(jù)中位數(shù)的定義即可作出判斷;(2)先算出樣本中C等級(jí)的百分比,再用總數(shù)乘以400即可.【詳解】解:(1)由直方圖中可知數(shù)據(jù)總數(shù)為40個(gè),第20,21個(gè)數(shù)據(jù)的平均數(shù)為本組數(shù)據(jù)的中位數(shù),第20,21個(gè)數(shù)據(jù)的等級(jí)都是C等級(jí),故本次調(diào)查中,男生的跳繩成績(jī)的中位數(shù)在C等級(jí);故答案為C.(2)400=100(人)答:估計(jì)該校九年級(jí)男生跳繩成績(jī)是等級(jí)的人數(shù)有100人.【點(diǎn)睛】本題考查了中位數(shù)的求法和用樣本數(shù)估計(jì)總體數(shù)據(jù),理解相關(guān)知識(shí)是解題的關(guān)鍵.20、(1)見(jiàn)解析;(2)1【解析】
(1)由矩形的性質(zhì)可知∠A=∠C=90°,由翻折的性質(zhì)可知∠A=∠F=90°,從而得到∠F=∠C,依據(jù)AAS證明△DCE≌△BFE即可;(2)由△DCE≌△BFE可知:EB=DE,依據(jù)AB=4,tan∠ADB=,即可得到DC,BC的長(zhǎng),然后再Rt△EDC中利用勾股定理列方程,可求得BE的長(zhǎng),從而可求得重疊部分的面積.【詳解】解:(1)∵四邊形ABCD是矩形,∴∠A=∠C=90°,AB=CD,由折疊可得,∠F=∠A,BF=AB,∴BF=DC,∠F=∠C=90°,又∵∠BEF=∠DEC,∴△DCE≌△BFE;(2)∵AB=4,tan∠ADB=,∴AD=8=BC,CD=4,∵△DCE≌△BFE,∴BE=DE,設(shè)BE=DE=x,則CE=8﹣x,在Rt△CDE中,CE2+CD2=DE2,∴(8﹣x)2+42=x2,解得x=5,∴BE=5,∴S△BDE=BE×CD=×5×4=1.【點(diǎn)睛】本題考查了折疊的性質(zhì)、全等三角形的判定和性質(zhì)以及勾股定理的綜合運(yùn)用,折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.21、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).【解析】
(1)由直線解析式可求得B點(diǎn)坐標(biāo),由A、B坐標(biāo),利用待定系數(shù)法可求得拋物線的表達(dá)式;(2)過(guò)C作CD∥y軸,交x軸于點(diǎn)E,交OB于點(diǎn)D,過(guò)B作BF⊥CD于點(diǎn)F,可設(shè)出C點(diǎn)坐標(biāo),利用C點(diǎn)坐標(biāo)可表示出CD的長(zhǎng),從而可表示出△BOC的面積,由條件可得到關(guān)于C點(diǎn)坐標(biāo)的方程,可求得C點(diǎn)坐標(biāo);(3)設(shè)MB交y軸于點(diǎn)N,則可證得△ABO≌△NBO,可求得N點(diǎn)坐標(biāo),可求得直線BN的解析式,聯(lián)立直線BM與拋物線解析式可求得M點(diǎn)坐標(biāo),過(guò)M作MG⊥y軸于點(diǎn)G,由B、C的坐標(biāo)可求得OB和OC的長(zhǎng),由相似三角形的性質(zhì)可求得的值,當(dāng)點(diǎn)P在第一象限內(nèi)時(shí),過(guò)P作PH⊥x軸于點(diǎn)H,由條件可證得△MOG∽△POH,由的值,可求得PH和OH,可求得P點(diǎn)坐標(biāo);當(dāng)P點(diǎn)在第三象限時(shí),同理可求得P點(diǎn)坐標(biāo).【詳解】(1)∵B(2,t)在直線y=x上,∴t=2,∴B(2,2),把A、B兩點(diǎn)坐標(biāo)代入拋物線解析式可得:,解得:,∴拋物線解析式為;(2)如圖1,過(guò)C作CD∥y軸,交x軸于點(diǎn)E,交OB于點(diǎn)D,過(guò)B作BF⊥CD于點(diǎn)F,∵點(diǎn)C是拋物線上第四象限的點(diǎn),∴可設(shè)C(t,2t2﹣3t),則E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB=CD?OE+CD?BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面積為2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.設(shè)MB交y軸于點(diǎn)N,如圖2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中,∵∠AOB=∠NOB,OB=OB,∠ABO=∠NBO,∴△AOB≌△NOB(ASA),∴ON=OA=,∴N(0,),∴可設(shè)直線BN解析式為y=kx+,把B點(diǎn)坐標(biāo)代入可得2=2k+,解得k=,∴直線BN的解析式為,聯(lián)立直線BN和拋物線解析式可得:,解得:或,∴M(,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=,OC=,∵△POC∽△MOB,∴,∠POC=∠BOM,當(dāng)點(diǎn)P在第一象限時(shí),如圖3,過(guò)M作MG⊥y軸于點(diǎn)G,過(guò)P作PH⊥x軸于點(diǎn)H,如圖3∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴∵M(jìn)(,),∴MG=,OG=,∴PH=MG=,OH=OG=,∴P(,);當(dāng)點(diǎn)P在第三象限時(shí),如圖4,過(guò)M作MG⊥y軸于點(diǎn)G,過(guò)P作PH⊥y軸于點(diǎn)H,同理可求得PH=MG=,OH=OG=,∴P(﹣,);綜上可知:存在滿足條件的點(diǎn)P,其坐標(biāo)為(,)或(﹣,).【點(diǎn)睛】本題為二次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法、三角形的面積、二次函數(shù)的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、方程思想及分類討論思想等知識(shí).在(1)中注意待定系數(shù)法的應(yīng)用,在(2)中用C點(diǎn)坐標(biāo)表示出△BOC的面積是解題的關(guān)鍵,在(3)中確定出點(diǎn)P的位置,構(gòu)造相似三角形是解題的關(guān)鍵,注意分兩種情況.22、(1)證明見(jiàn)解析;(2)AC=,CD=,【解析】分析:(1)延長(zhǎng)AO交BC于H,連接BO,證明A、O在線
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025編輯部工作計(jì)劃
- 六年級(jí)語(yǔ)文教學(xué)計(jì)劃進(jìn)度
- 小班學(xué)期工作計(jì)劃范文匯編
- 2025年小班保育員工作計(jì)劃 幼兒園小班保育員計(jì)劃
- 幼兒園2025年度小班安全計(jì)劃
- 2025-2025政教處學(xué)期工作計(jì)劃
- 行政助理下半年工作計(jì)劃
- 個(gè)人提升計(jì)劃范文
- 《基礎(chǔ)攝影》課件
- 2025年臨夏貨運(yùn)從業(yè)資格考試題
- 軟件版本說(shuō)明
- 大學(xué)人工智能期末考試題
- 《基于PLC的五層電梯控制系統(tǒng)設(shè)計(jì)(論文)》10000字
- 2023-2024學(xué)年湖南省漣源市初中語(yǔ)文七年級(jí)上冊(cè)期末評(píng)估試卷
- 2023-2024學(xué)年山東省青島市小學(xué)語(yǔ)文二年級(jí)上冊(cè)期末通關(guān)試題
- GB/T 26158-2010中國(guó)未成年人人體尺寸
- 納米酶研究進(jìn)展
- 應(yīng)用統(tǒng)計(jì)學(xué)實(shí)驗(yàn)指導(dǎo)書(shū)
- 物流學(xué)概論(第五版)第10章-區(qū)域物流教材課件
- 《幼兒衛(wèi)生保健基礎(chǔ)》第五章 特殊幼兒衛(wèi)生保健
- 最新國(guó)家開(kāi)放大學(xué)-《財(cái)務(wù)管理》-機(jī)考復(fù)習(xí)資料-附答案
評(píng)論
0/150
提交評(píng)論