江西省吉安朝宗實驗學校2024屆中考數(shù)學押題試卷含解析_第1頁
江西省吉安朝宗實驗學校2024屆中考數(shù)學押題試卷含解析_第2頁
江西省吉安朝宗實驗學校2024屆中考數(shù)學押題試卷含解析_第3頁
江西省吉安朝宗實驗學校2024屆中考數(shù)學押題試卷含解析_第4頁
江西省吉安朝宗實驗學校2024屆中考數(shù)學押題試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江西省吉安朝宗實驗學校2024屆中考數(shù)學押題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,正六邊形ABCDEF內(nèi)接于⊙O,半徑為4,則這個正六邊形的邊心距OM的長為()A.2 B.2 C. D.42.如圖,已知△ABC的三個頂點均在格點上,則cosA的值為()A. B. C. D.3.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=40°,則∠2的度數(shù)為()A.50° B.40° C.30° D.25°4.下列各式正確的是()A. B.C. D.5.某一公司共有51名員工(包括經(jīng)理),經(jīng)理的工資高于其他員工的工資,今年經(jīng)理的工資從去年的200000元增加到225000元,而其他員工的工資同去年一樣,這樣,這家公司所有員工今年工資的平均數(shù)和中位數(shù)與去年相比將會()A.平均數(shù)和中位數(shù)不變 B.平均數(shù)增加,中位數(shù)不變C.平均數(shù)不變,中位數(shù)增加 D.平均數(shù)和中位數(shù)都增大6.下列計算,正確的是()A.a(chǎn)2?a2=2a2 B.a(chǎn)2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+17.將一把直尺與一塊三角板如圖所示放置,若則∠2的度數(shù)為()A.50° B.110° C.130° D.150°8.如圖所示,將矩形紙片ABCD折疊,使點D與點B重合,點C落在點C′處,折痕為EF,若∠ABE=20°,那么∠EFC′的度數(shù)為()A.115° B.120° C.125° D.130°9.下列等式從左到右的變形,屬于因式分解的是A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)C.4x2+8x-4=4x D.4my-2=2(2my-1)10.已知反比例函數(shù),下列結論不正確的是()A.圖象經(jīng)過點(﹣2,1) B.圖象在第二、四象限C.當x<0時,y隨著x的增大而增大 D.當x>﹣1時,y>2二、填空題(本大題共6個小題,每小題3分,共18分)11.已知二次函數(shù)f(x)=x2-3x+1,那么f(2)=_________.12.若式子有意義,則實數(shù)x的取值范圍是_______.13.今年,某縣境內(nèi)跨湖高速進入施工高峰期,交警隊為提醒出行車輛,在一些主要路口設立了交通路況警示牌(如圖).已知立桿AD高度是4m,從側面C點測得警示牌頂端點A和底端B點的仰角(∠ACD和∠BCD)分別是60°,45°.那么路況警示牌AB的高度為_____.14.如圖,⊙M的半徑為2,圓心M(3,4),點P是⊙M上的任意一點,PA⊥PB,且PA、PB與x軸分別交于A、B兩點,若點A、點B關于原點O對稱,則AB的最小值為_____.15.如圖,直線y1=kx+n(k≠0)與拋物線y2=ax2+bx+c(a≠0)分別交于A(﹣1,0),B(2,﹣3)兩點,那么當y1>y2時,x的取值范圍是_____.16.如圖,△ABC≌△ADE,∠EAC=40°,則∠B=_______°.三、解答題(共8題,共72分)17.(8分)如圖,AB是圓O的直徑,AC是圓O的弦,過點C的切線交AB的延長線于點D,若∠A=∠D,CD=2.(1)求∠A的度數(shù).(2)求圖中陰影部分的面積.18.(8分)如圖,小明在一塊平地上測山高,先在B處測得山頂A的仰角為30°,然后向山腳直行60米到達C處,再測得山頂A的仰角為45°,求山高AD的長度.(測角儀高度忽略不計)19.(8分)已知P是的直徑BA延長線上的一個動點,∠P的另一邊交于點C、D,兩點位于AB的上方,=6,OP=m,,如圖所示.另一個半徑為6的經(jīng)過點C、D,圓心距.(1)當m=6時,求線段CD的長;(2)設圓心O1在直線上方,試用n的代數(shù)式表示m;(3)△POO1在點P的運動過程中,是否能成為以OO1為腰的等腰三角形,如果能,試求出此時n的值;如果不能,請說明理由.20.(8分)如圖,點A(m,m+1),B(m+1,2m-3)都在反比例函數(shù)的圖象上.(1)求m,k的值;(2)如果M為x軸上一點,N為y軸上一點,以點A,B,M,N為頂點的四邊形是平行四邊形,試求直線MN的函數(shù)表達式.21.(8分)如圖,在平面直角坐標系xOy中,直線與雙曲線(x>0)交于點.求a,k的值;已知直線過點且平行于直線,點P(m,n)(m>3)是直線上一動點,過點P分別作軸、軸的平行線,交雙曲線(x>0)于點、,雙曲線在點M、N之間的部分與線段PM、PN所圍成的區(qū)域(不含邊界)記為.橫、縱坐標都是整數(shù)的點叫做整點.①當時,直接寫出區(qū)域內(nèi)的整點個數(shù);②若區(qū)域內(nèi)的整點個數(shù)不超過8個,結合圖象,求m的取值范圍.22.(10分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.求證:△AEF≌△DEB;證明四邊形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD的面積.23.(12分)某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐,餐品為四樣A:菜包、B:面包、C:雞蛋、D:油條.超市約定:隨機發(fā)放,早餐一人一份,一份兩樣,一樣一個.按約定,“某顧客在該天早餐得到兩個雞蛋”是事件(填“隨機”、“必然”或“不可能”);請用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.24.在同一時刻兩根木竿在太陽光下的影子如圖所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墻上的影子MN=1.1m,求木竿PQ的長度.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】分析:連接OC、OB,證出△BOC是等邊三角形,根據(jù)銳角三角函數(shù)的定義求解即可.詳解:如圖所示,連接OC、OB

∵多邊形ABCDEF是正六邊形,∴∠BOC=60°,∵OC=OB,∴△BOC是等邊三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×=2.故選B.點睛:考查的是正六邊形的性質(zhì)、等邊三角形的判定與性質(zhì)、三角函數(shù);熟練掌握正六邊形的性質(zhì),由三角函數(shù)求出OM是解決問題的關鍵.2、D【解析】

過B點作BD⊥AC,如圖,由勾股定理得,AB=,AD=,cosA===,故選D.3、A【解析】

由兩直線平行,同位角相等,可求得∠3的度數(shù),然后求得∠2的度數(shù).【詳解】如圖,∵∠1=40°,∴∠3=∠1=40°,∴∠2=90°-40°=50°.故選A.【點睛】此題考查了平行線的性質(zhì).利用兩直線平行,同位角相等是解此題的關鍵.4、A【解析】∵,則B錯;,則C;,則D錯,故選A.5、B【解析】

本題考查統(tǒng)計的有關知識,找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù),平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).【詳解】解:設這家公司除經(jīng)理外50名員工的工資和為a元,則這家公司所有員工去年工資的平均數(shù)是元,今年工資的平均數(shù)是元,顯然;

由于這51個數(shù)據(jù)按從小到大的順序排列的次序完全沒有變化,所以中位數(shù)不變.

故選B.【點睛】本題主要考查了平均數(shù),中位數(shù)的概念,要掌握這些基本概念才能熟練解題.同時注意到個別數(shù)據(jù)對平均數(shù)的影響較大,而對中位數(shù)和眾數(shù)沒影響.6、C【解析】

解:A.故錯誤;B.故錯誤;C.正確;D.故選C.【點睛】本題考查合并同類項,同底數(shù)冪相乘;冪的乘方,以及完全平方公式的計算,掌握運算法則正確計算是解題關鍵.7、C【解析】

如圖,根據(jù)長方形的性質(zhì)得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【詳解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故選C.【點睛】本題考查了平行線的性質(zhì),三角形外角的性質(zhì)等,準確識圖是解題的關鍵.8、C【解析】分析:由已知條件易得∠AEB=70°,由此可得∠DEB=110°,結合折疊的性質(zhì)可得∠DEF=55°,則由AD∥BC可得∠EFC=125°,再由折疊的性質(zhì)即可得到∠EFC′=125°.詳解:∵在△ABE中,∠A=90°,∠ABE=20°,∴∠AEB=70°,∴∠DEB=180°-70°=110°,∵點D沿EF折疊后與點B重合,∴∠DEF=∠BEF=∠DEB=55°,∵在矩形ABCD中,AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=180°-55°=125°,∴由折疊的性質(zhì)可得∠EFC′=∠EFC=125°.故選C.點睛:這是一道有關矩形折疊的問題,熟悉“矩形的四個內(nèi)角都是直角”和“折疊的性質(zhì)”是正確解答本題的關鍵.9、D【解析】

根據(jù)因式分解是把一個多項式轉(zhuǎn)化成幾個整式積的形式,可得答案.【詳解】解:A、是整式的乘法,故A不符合題意;

B、沒把一個多項式轉(zhuǎn)化成幾個整式積的形式,故B不符合題意;

C、沒把一個多項式轉(zhuǎn)化成幾個整式積的形式,故C不符合題意;

D、把一個多項式轉(zhuǎn)化成幾個整式積的形式,故D符合題意;

故選D.【點睛】本題考查了因式分解的意義,因式分解是把一個多項式轉(zhuǎn)化成幾個整式積的形式.10、D【解析】

A選項:把(-2,1)代入解析式得:左邊=右邊,故本選項正確;

B選項:因為-2<0,圖象在第二、四象限,故本選項正確;

C選項:當x<0,且k<0,y隨x的增大而增大,故本選項正確;

D選項:當x>0時,y<0,故本選項錯誤.

故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、-1【解析】

根據(jù)二次函數(shù)的性質(zhì)將x=2代入二次函數(shù)解析式中即可.【詳解】f(x)=x2-3x+1f(2)=22-32+1=-1.故答案為-1.【點睛】本題考查的知識點是二次函數(shù)的性質(zhì),解題的關鍵是熟練的掌握二次函數(shù)的性質(zhì).12、x≤2且x≠1【解析】

根據(jù)被開方數(shù)大于等于1,分母不等于1列式計算即可得解.【詳解】解:由題意得,且x≠1,解得且x≠1.故答案為且x≠1.【點睛】本題考查的知識點為:分式有意義,分母不為1;二次根式的被開方數(shù)是非負數(shù).13、m【解析】

由特殊角的正切值即可得出線段CD的長度,在Rt△BDC中,由∠BCD=45°,得出CD=BD,求出BD長度,再利用線段間的關系即可得出結論.【詳解】在Rt△ADC中,∠ACD=60°,AD=4∴tan60°==∴CD=∵在Rt△BCD中,∠BAD=45°,CD=∴BD=CD=.∴AB=AD-BD=4-=路況警示牌AB的高度為m.故答案為:m.【點睛】解直角三角形的應用-仰角俯角問題.14、6【解析】

點P在以O為圓心OA為半徑的圓上,P是兩個圓的交點,當⊙O與⊙M外切時,AB最小,根據(jù)條件求出AO即可求解;【詳解】解:點P在以O為圓心OA為半徑的圓上,∴P是兩個圓的交點,當⊙O與⊙M外切時,AB最小,∵⊙M的半徑為2,圓心M(3,4),∴PM=5,∴OA=3,∴AB=6,故答案為6;【點睛】本題考查圓與圓的位置關系;能夠?qū)栴}轉(zhuǎn)化為兩圓外切時AB最小是解題的關鍵.15、﹣1<x<2【解析】

根據(jù)圖象得出取值范圍即可.【詳解】解:因為直線y1=kx+n(k≠0)與拋物線y2=ax2+bx+c(a≠0)分別交于A(﹣1,0),B(2,﹣3)兩點,所以當y1>y2時,﹣1<x<2,故答案為﹣1<x<2【點睛】此題考查二次函數(shù)與不等式,關鍵是根據(jù)圖象得出取值范圍.16、1°【解析】

根據(jù)全等三角形的對應邊相等、對應角相等得到∠BAC=∠DAE,AB=AD,根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理計算即可.【詳解】∵△ABC≌△ADE,∴∠BAC=∠DAE,AB=AD,∴∠BAD=∠EAC=40°,∴∠B=(180°-40°)÷2=1°,故答案為1.【點睛】本題考查的是全等三角形的性質(zhì)和三角形內(nèi)角和定理,掌握全等三角形的對應邊相等、對應角相等是解題的關鍵.三、解答題(共8題,共72分)17、(1)∠A=30°;(2)【解析】

(1)連接OC,由過點C的切線交AB的延長線于點D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC,推出∠A=∠ACO,由∠A=∠D,推出∠A=∠ACO=∠D再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.(2)先求∠COD度數(shù)及OC長度,即可求出圖中陰影部分的面積.【詳解】解:(1)連結OC∵CD為⊙O的切線∴OC⊥CD∴∠OCD=90°又∵OA=OC∴∠A=∠ACO又∵∠A=∠D∴∠A=∠ACO=∠D而∠A+∠ACD+∠D=180°﹣90°=90°∴∠A=30°(2)由(1)知:∠D=∠A=30°∴∠COD=60°又∵CD=2∴OC=2∴S陰影=.【點睛】本題考查的知識點是扇形面積的計算及切線的性質(zhì),解題的關鍵是熟練的掌握扇形面積的計算及切線的性質(zhì).18、30米【解析】

設AD=xm,在Rt△ACD中,根據(jù)正切的概念用x表示出CD,在Rt△ABD中,根據(jù)正切的概念列出方程求出x的值即可.【詳解】由題意得,∠ABD=30°,∠ACD=45°,BC=60m,設AD=xm,在Rt△ACD中,∵tan∠ACD=,∴CD=AD=x,∴BD=BC+CD=x+60,在Rt△ABD中,∵tan∠ABD=,∴,∴米,答:山高AD為30米.【點睛】本題考查的是解直角三角形的應用﹣仰角俯角問題,掌握仰角俯角的概念、熟記銳角三角函數(shù)的定義是解題的關鍵.19、(1)CD=;(2)m=;(3)n的值為或【解析】分析:(1)過點作⊥,垂足為點,連接.解Rt△,得到的長.由勾股定理得的長,再由垂徑定理即可得到結論;(2)解Rt△,得到和Rt△中,由勾股定理即可得到結論;(3)△成為等腰三角形可分以下幾種情況討論:①當圓心、在弦異側時,分和.②當圓心、在弦同側時,同理可得結論.詳解:(1)過點作⊥,垂足為點,連接.在Rt△,∴.∵=6,∴.由勾股定理得:.∵⊥,∴.(2)在Rt△,∴.在Rt△中,.在Rt△中,.可得:,解得.(3)△成為等腰三角形可分以下幾種情況:①當圓心、在弦異側時i),即,由,解得.即圓心距等于、的半徑的和,就有、外切不合題意舍去.ii),由,解得:,即,解得.②當圓心、在弦同側時,同理可得:.∵是鈍角,∴只能是,即,解得.綜上所述:n的值為或.點睛:本題是圓的綜合題.考查了圓的有關性質(zhì)和兩圓的位置關系以及解直徑三角形.解答(3)的關鍵是要分類討論.20、(1)m=3,k=12;(2)或【解析】【分析】(1)把A(m,m+1),B(m+3,m-1)代入反比例函數(shù)y=,得k=m(m+1)=(m+3)(m-1),再求解;(2)用待定系數(shù)法求一次函數(shù)解析式;(3)過點A作AM⊥x軸于點M,過點B作BN⊥y軸于點N,兩線交于點P.根據(jù)平行四邊形判定和勾股定理可求出M,N的坐標.【詳解】解:(1)∵點A(m,m+1),B(m+3,m-1)都在反比例函數(shù)y=的圖像上,∴k=xy,∴k=m(m+1)=(m+3)(m-1),∴m2+m=m2+2m-3,解得m=3,∴k=3×(3+1)=12.(2)∵m=3,∴A(3,4),B(6,2).設直線AB的函數(shù)表達式為y=k′x+b(k′≠0),則解得∴直線AB的函數(shù)表達式為y=-x+6.(3)M(3,0),N(0,2)或M(-3,0),N(0,-2).解答過程如下:過點A作AM⊥x軸于點M,過點B作BN⊥y軸于點N,兩線交于點P.∵由(1)知:A(3,4),B(6,2),∴AP=PM=2,BP=PN=3,∴四邊形ANMB是平行四邊形,此時M(3,0),N(0,2).當M′(-3,0),N′(0,-2)時,根據(jù)勾股定理能求出AM′=BN′,AB=M′N′,即四邊形AM′N′B是平行四邊形.故M(3,0),N(0,2)或M(-3,0),N(0,-2).【點睛】本題考核知識點:反比例函數(shù)綜合.解題關鍵點:熟記反比例函數(shù)的性質(zhì).21、(1),;(2)①3,②.【解析】

(1)將代入可求出a,將A點坐標代入可求出k;(2)①根據(jù)題意畫出函數(shù)圖像,可直接寫出區(qū)域內(nèi)的整點個數(shù);②求出直線的表達式為,根據(jù)圖像可得到兩種極限情況,求出對應的m的取值范圍即可.【詳解】解:(1)將代入得a=4將代入,得(2)①區(qū)域內(nèi)的整點個數(shù)是3②∵直線是過點且平行于直線∴直線的表達式為當時,即線段PM上有整點∴【點睛】本題考查了待定系數(shù)法求函數(shù)解析式以及函數(shù)圖像的交點問題,正確理解整點的定義并畫出函數(shù)圖像,運用數(shù)形結合的思想是解題關鍵.22、(1)證明詳見解析;(2)證明詳見解析;(3)1.【解析】

(1)利用平行線的性質(zhì)及中點的定義,可利用AAS證得結論;

(2)由(1)可得AF=BD,結合條件可求得AF=DC,則可證明四邊形ADCF為平行四邊形,再利用直角三角形的性質(zhì)可證得AD=CD,可證得四邊形ADCF為菱形;

(3)連接DF,可證得四邊形ABDF為平行四邊形,則可求得DF的長,利用菱形的面積公式可求得答案.【詳解】(1)證明:∵AF∥BC,

∴∠AFE=∠DBE,

∵E是AD的中點,

∴AE=DE,

在△AFE和△DBE中,

∴△AFE≌△DBE(AAS);

(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論