版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
30圓錐曲線中的存在性問題【2022屆新高考一模試題分類匯編】一、解答題1.(2022·安徽六安·一模(理))已知橢圓的左右焦點(diǎn)分別是,,右頂點(diǎn)和上頂點(diǎn)分別為,,的面積為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)以此橢圓的上頂點(diǎn)為直角頂點(diǎn)作橢圓的內(nèi)接等腰直角,這樣的直角三角形是否存在?若存在,請(qǐng)說明有幾個(gè);若不存在,請(qǐng)說明理由.【解析】(1)由題意得
①
因?yàn)?/p>
,所以②
由①②得③,由②③得,所以橢圓方程為;(2)假設(shè)能構(gòu)成等腰直角,其中B(0,1),由題意可知,直角邊不可能垂直或平行于軸,故可設(shè)邊所在直線的方程為(不妨設(shè))聯(lián)立直線方程和橢圓方程得:,得,用代替上式中的,得,由得,即,,故存在三個(gè)滿足題設(shè)條件的內(nèi)接等腰直角三角形.2.(2022·安徽·淮南第一中學(xué)一模(理))已知橢圓的左、右焦點(diǎn)分別為、,點(diǎn)在橢圓上,且滿足.(1)求橢圓的方程;(2)設(shè)為坐標(biāo)原點(diǎn),過點(diǎn)且斜率不為零的直線交橢圓于不同的兩點(diǎn)、,則在軸上是否存在定點(diǎn),使得平分?若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.【解析】(1)(1)因?yàn)椋?,,即,所以,又點(diǎn)在橢圓上,、,且由橢圓定義得,則,,則橢圓的標(biāo)準(zhǔn)方程為.(2)假設(shè)存在定點(diǎn)滿足要求,因?yàn)橹本€斜率不為零,所以設(shè)直線,設(shè)點(diǎn)、、,聯(lián)立可得,則,由韋達(dá)定理可得,,因?yàn)橹本€平分,則,即,,整理得,,由于,,所以存在滿足要求.3.(2022·山西晉中·二模(理))已知:的離心率為,點(diǎn)在橢圓上.(1)求橢圓C的方程;(2)若直線與橢圓C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),且,是否存在定圓E,使得直線與圓E相切?若不存在,說明理由,若存在,求出圓E的方程.【解析】(1)∵點(diǎn)在橢圓上,∴,∵橢圓的離心率,∴,即,代入,得到,,∴橢圓的方程為.(2)假設(shè)存在.∵,∴得到,①當(dāng)直線的斜率不存在時(shí),設(shè):,代入橢圓方程得,不妨令,,由,得,解得,此時(shí),與圓相切.②當(dāng)直線的斜率存在時(shí),設(shè):,,,聯(lián)立得,則,由根與系數(shù)的關(guān)系得,,則,由,即可得,整理得,滿足,∴,即原點(diǎn)到直線的距離為,∴直線與圓相切.綜上所述,存在定圓,使得直線與圓E相切,這時(shí)定圓的方程為.4.(2022·全國·模擬預(yù)測(cè))已知在平面直角坐標(biāo)系:中,動(dòng)圓P與圓內(nèi)切,與圓外切,記動(dòng)圓圓心P的軌跡為曲線E.(1)求E的標(biāo)準(zhǔn)方程.(2)若直線與E交于A,B兩點(diǎn),直線與E交于另一個(gè)點(diǎn)M,連接AM交x軸于點(diǎn)N,試問是否存在t,使得的面積等于?若存在,求出t的值;若不存在,請(qǐng)說明理由.【解析】(1)由題意知,圓,圓心,半徑為3,圓,圓心,半徑為1.設(shè)動(dòng)圓P的半徑為R,則,,所以,由橢圓的定義可知,曲線E是以,為左、右焦點(diǎn)的橢圓(不包含右頂點(diǎn)),設(shè)曲線E的方程為,則,,得,,又,故,所以E的標(biāo)準(zhǔn)方程為.(2)由題易知直線的斜率存在且不為0,設(shè)直線的方程為,代入得,,易知,設(shè),,則,,易知,,由橢圓的對(duì)稱性知,則,所以直線AM的方程為,令,得,所以,要使的面積等于,則,代入,得,由題知,(舍)所以,不妨設(shè),則直線AM的方程為,代入,得,因?yàn)?,所以,所以存在,使得的面積等于.5.(2022·全國·模擬預(yù)測(cè))已知雙曲線的右焦點(diǎn)為,點(diǎn)F到C的漸近線的距離為1.(1)求C的方程.(2)若直線與C的右支相切,切點(diǎn)為P,與直線交于點(diǎn)Q,問x軸上是否存在定點(diǎn)M,使得?若存在,求出M點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.【解析】(1)由題意,雙曲線的漸近線方程為,又由雙曲線的右焦點(diǎn)為,可得,所以到漸近線的距離,所以,所以C的方程為.(2)由題意易知直線的斜率存在,設(shè)其方程為,聯(lián)立與C的方程,消去y,得,因?yàn)橹本€與C的右支相切,所以,(雙曲線右支上的點(diǎn)需滿足的條件),得,則,設(shè)切點(diǎn),則,,設(shè),因?yàn)镼是直線與直線的交點(diǎn),所以,,假設(shè)x軸上存在定點(diǎn),使得,則,故存在,使得,即,所以x軸上存在定點(diǎn),使得.6.(2022·北京·北師大實(shí)驗(yàn)中學(xué)模擬預(yù)測(cè))如圖,橢圓E:的左焦點(diǎn)為,右焦點(diǎn)為,離心率,過的直線交橢圓于A?B兩點(diǎn),且△的周長為8.(1)求橢圓E的方程;(2)設(shè)動(dòng)直線l:與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線相交于點(diǎn)Q,試探究:在x軸上是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.【解析】(1)由橢圓的定義可知△,的周長為,即,∵,∴,又∵,∴,故橢圓C的方程為:,(2)將聯(lián)立,消元可得,∵動(dòng)直線:與橢圓E有且只有一個(gè)公共點(diǎn)P,∴,∴,此時(shí),,∴由得,假設(shè)在x軸上存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M,設(shè),則,,,整理得,對(duì)任意實(shí)數(shù)m,k恒成立,則,故在x軸上存在定點(diǎn),使得以為直徑的圓恒過點(diǎn).7.(2022·黑龍江實(shí)驗(yàn)中學(xué)模擬預(yù)測(cè)(理))圓的離心率為,且過點(diǎn),點(diǎn)分別為橢圓的左頂點(diǎn)和右頂點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)是否存在定點(diǎn),對(duì)任意過點(diǎn)的直線(在橢圓上且異于兩點(diǎn)),都有.若存在,則求出的值;若不存在,請(qǐng)說明理由.【解析】(1)由題意得:,解得:,橢圓的標(biāo)準(zhǔn)方程為;(2)由(1)知:,;①當(dāng)直線斜率不存在時(shí),由得:或,若,,則,,,解得:;若,,同理可求得:;②當(dāng)直線斜率存在時(shí),設(shè),,則;設(shè)直線,由得:,,解得:,,又,同理可得:,,,整理可得:,當(dāng)時(shí),恒成立;綜上所述:存在滿足題意的點(diǎn),使得恒成立,此時(shí).8.(2022·湖南永州·二模)設(shè)雙曲線,點(diǎn),為雙曲線的左?右頂點(diǎn),點(diǎn)為雙曲線上異于頂點(diǎn)的一點(diǎn),設(shè)直線,的斜率分別為,.(1)證明:;(2)若過點(diǎn)作不與軸重合的直線與雙曲線交于不同兩點(diǎn),,設(shè)直線,的斜率分別為,.是否存在常數(shù)使?若存在,求出的值,若不存在,請(qǐng)說明理由.【解析】(1)證明:由雙曲線,點(diǎn)A,為雙曲線的左?右頂點(diǎn),可知:,設(shè),則,所以;(2)假設(shè)存在常數(shù)使,由題意設(shè)直線l的方程為,聯(lián)立,整理得:,設(shè),則,所以,則,故,而,所以===,令,解得,故存在常數(shù),使.9.(2022·全國·模擬預(yù)測(cè))已知橢圓的離心率為,圓與軸相切,為坐標(biāo)原點(diǎn).(1)求橢圓的方程;(2)設(shè)橢圓的右焦點(diǎn)為,過點(diǎn)的直線交橢圓于兩點(diǎn),是否存在直線使的面積為?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.【解析】(1)因?yàn)閳A與軸相切,所以所以,又,所以,所以橢圓;(2)由(1)可知橢圓的右焦點(diǎn)為,①當(dāng)直線的斜率為時(shí),顯然不適合題意;②當(dāng)直線的斜率不為時(shí),設(shè)直線,聯(lián)立,恒成立,所以,則所以令,解得或,即得或所以符合條件的直線方程分別為或或或.10.(2022·全國·模擬預(yù)測(cè))已知拋物線的準(zhǔn)線為,直線交于,兩點(diǎn),過點(diǎn),分別作上的垂線,垂足分別為,.(1)若梯形的面積為,求實(shí)數(shù)的值;(2)是否存在常數(shù),使得成立?若存在,求出的值,若不存在,請(qǐng)說明理由?【解析】(1)由題得準(zhǔn)線,直線過焦點(diǎn).設(shè),,則,,聯(lián)立得,所以,,所以,,.而梯形的面積解得或.(2),又,所以為常數(shù).11.(2022·全國·模擬預(yù)測(cè))有一種畫橢圓的工具如圖1所示,定點(diǎn)O是滑槽AB的中點(diǎn),短桿OP繞O轉(zhuǎn)動(dòng),長桿PQ通過P處鉸鏈與OP連接,PQ上的栓子D可沿滑槽AB滑動(dòng),且,.當(dāng)栓子D在滑槽AB內(nèi)作往復(fù)運(yùn)動(dòng)時(shí),帶動(dòng)P繞O轉(zhuǎn)動(dòng)一周(D不動(dòng)時(shí),P也不動(dòng)),Q處的筆尖畫出的曲線記為C.以O(shè)為原點(diǎn),AB所在的直線為x軸,建立如圖2所示的平面直角坐標(biāo)系.(1)求曲線C的方程;(2)在平面直角坐標(biāo)系xOy中,過點(diǎn)的動(dòng)直線l與曲線C交于E、F兩點(diǎn),是否存在異于點(diǎn)M的定點(diǎn)N,使得MN平分?若存在,求點(diǎn)N坐標(biāo);若不存在,說明理由.【解析】(1)由題意可知:曲線是中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸的橢圓,設(shè):,則,所以曲線C的方程為;(2)假設(shè)存在異于點(diǎn)的定點(diǎn)N,使得MN平分;當(dāng)直線與軸平行時(shí),設(shè)直線與橢圓相交于兩點(diǎn)為,由對(duì)稱性知:若定點(diǎn)N存在,則點(diǎn)N一定在軸上,設(shè),當(dāng)直線與軸平行時(shí),設(shè)直線與橢圓相交于兩點(diǎn)為,MN平分也成立;當(dāng)直線斜率存在且不為0時(shí),設(shè)直線方程為:,,聯(lián)立,得,,,所以,又,又,所以,因?yàn)椴缓銥?,所以,即,,綜上可知:存在,使得MN平分12.(2022·四川·成都七中二模(理))在中,的坐標(biāo)分別是,點(diǎn)是的重心,軸上一點(diǎn)滿足,且.(1)求的頂點(diǎn)的軌跡的方程;(2)直線與軌跡相交于兩點(diǎn),若在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 旅游用地轉(zhuǎn)讓居間協(xié)議
- 2025年房地產(chǎn)銷售代理服務(wù)合同樣本
- 舟山2025年浙江舟山市定海區(qū)昌國街道招聘公益性崗位筆試歷年參考題庫附帶答案詳解
- 福建2025年福建水利電力職業(yè)技術(shù)學(xué)院招聘35人筆試歷年參考題庫附帶答案詳解
- 煙臺(tái)2024年山東煙臺(tái)大學(xué)招聘5人(博士第三批)筆試歷年參考題庫附帶答案詳解
- 2025年度鮮奶生產(chǎn)安全與環(huán)境保護(hù)合同范本3篇
- 道路工程冬季施工方案
- 2025年度車隊(duì)運(yùn)輸車輛安全監(jiān)控系統(tǒng)安裝合同3篇
- 棗莊2025年山東省滕州市第一中學(xué)校園招聘15人筆試歷年參考題庫附帶答案詳解
- 杭州浙江杭州市錢塘區(qū)青少年宮招聘10人筆試歷年參考題庫附帶答案詳解
- 分割不動(dòng)產(chǎn)的協(xié)議書(2篇)
- 菏澤2024年山東菏澤市中心血站招聘15人筆試歷年典型考點(diǎn)(頻考版試卷)附帶答案詳解版
- 供熱通風(fēng)與空調(diào)工程施工企業(yè)生產(chǎn)安全事故隱患排查治理體系實(shí)施指南
- 精-品解析:廣東省深圳市羅湖區(qū)2023-2024學(xué)年高一上學(xué)期期末考試化學(xué)試題(解析版)
- 記賬實(shí)操-基金管理公司的會(huì)計(jì)處理分錄示例
- 中國慢性便秘診治指南
- 兒童流感診療及預(yù)防指南(2024醫(yī)生版)
- 沐足行業(yè)嚴(yán)禁黃賭毒承諾書
- 2025年蛇年紅色喜慶中國風(fēng)春節(jié)傳統(tǒng)節(jié)日介紹
- 河北省承德市2023-2024學(xué)年高一上學(xué)期期末物理試卷(含答案)
- 山西省2024年中考物理試題(含答案)
評(píng)論
0/150
提交評(píng)論