版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
福建省泉州市泉港一中2023-2024學(xué)年高三二模(4月)數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.偶函數(shù)關(guān)于點(diǎn)對(duì)稱,當(dāng)時(shí),,求()A. B. C. D.2.若函數(shù)函數(shù)只有1個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.3.已知復(fù)數(shù)滿足,其中為虛數(shù)單位,則().A. B. C. D.4.平行四邊形中,已知,,點(diǎn)、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.5.設(shè),滿足約束條件,則的最大值是()A. B. C. D.6.△ABC的內(nèi)角A,B,C的對(duì)邊分別為,已知,則為()A. B. C.或 D.或7.已知函數(shù)是定義在上的偶函數(shù),且在上單調(diào)遞增,則()A. B.C. D.8.已知函數(shù)fx=sinωx+π6+A.16,13 B.19.如圖所示的“數(shù)字塔”有以下規(guī)律:每一層最左與最右的數(shù)字均為2,除此之外每個(gè)數(shù)字均為其兩肩的數(shù)字之積,則該“數(shù)字塔”前10層的所有數(shù)字之積最接近()A. B. C. D.10.函數(shù)在上的圖象大致為()A. B.C. D.11.在中,為上異于,的任一點(diǎn),為的中點(diǎn),若,則等于()A. B. C. D.12.將4名大學(xué)生分配到3個(gè)鄉(xiāng)鎮(zhèn)去當(dāng)村官,每個(gè)鄉(xiāng)鎮(zhèn)至少一名,則不同的分配方案種數(shù)是()A.18種 B.36種 C.54種 D.72種二、填空題:本題共4小題,每小題5分,共20分。13.某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進(jìn)行問卷調(diào)查.已知高一被抽取的人數(shù)為,那么高三被抽取的人數(shù)為_______.14.函數(shù)滿足,當(dāng)時(shí),,若函數(shù)在上有1515個(gè)零點(diǎn),則實(shí)數(shù)的范圍為___________.15.已知一個(gè)正四棱錐的側(cè)棱與底面所成的角為,側(cè)面積為,則該棱錐的體積為__________.16.已知在等差數(shù)列中,,,前n項(xiàng)和為,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù).(Ⅰ)當(dāng)時(shí),求不等式的解集;(Ⅱ)若函數(shù)的圖象與直線所圍成的四邊形面積大于20,求的取值范圍.18.(12分)如圖,在四棱柱中,平面,底面ABCD滿足∥BC,且(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.19.(12分)傳染病的流行必須具備的三個(gè)基本環(huán)節(jié)是:傳染源、傳播途徑和人群易感性.三個(gè)環(huán)節(jié)必須同時(shí)存在,方能構(gòu)成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應(yīng)該佩戴口罩.某地區(qū)已經(jīng)出現(xiàn)了新冠狀病毒的感染病人,為了掌握該地區(qū)居民的防控意識(shí)和防控情況,用分層抽樣的方法從全體居民中抽出一個(gè)容量為100的樣本,統(tǒng)計(jì)樣本中每個(gè)人出行是否會(huì)佩戴口罩的情況,得到下面列聯(lián)表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握認(rèn)為是否會(huì)佩戴口罩出行的行為與年齡有關(guān)?(2)用樣本估計(jì)總體,若從該地區(qū)出行不戴口罩的居民中隨機(jī)抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.82820.(12分)已知在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為.(1)求直線的極坐標(biāo)方程;(2)若直線與曲線交于,兩點(diǎn),求的面積.21.(12分)已知函數(shù)(Ⅰ)若,求曲線在點(diǎn)處的切線方程;(Ⅱ)若在上恒成立,求實(shí)數(shù)的取值范圍;(Ⅲ)若數(shù)列的前項(xiàng)和,,求證:數(shù)列的前項(xiàng)和.22.(10分)已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離比到軸的距離多.(1)求動(dòng)點(diǎn)的軌跡的方程;(2)設(shè),是軌跡在上異于原點(diǎn)的兩個(gè)不同點(diǎn),直線和的傾斜角分別為和,當(dāng),變化且時(shí),證明:直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
推導(dǎo)出函數(shù)是以為周期的周期函數(shù),由此可得出,代值計(jì)算即可.【詳解】由于偶函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,則,,,則,所以,函數(shù)是以為周期的周期函數(shù),由于當(dāng)時(shí),,則.故選:D.【點(diǎn)睛】本題考查利用函數(shù)的對(duì)稱性和奇偶性求函數(shù)值,推導(dǎo)出函數(shù)的周期性是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.2、C【解析】
轉(zhuǎn)化有1個(gè)零點(diǎn)為與的圖象有1個(gè)交點(diǎn),求導(dǎo)研究臨界狀態(tài)相切時(shí)的斜率,數(shù)形結(jié)合即得解.【詳解】有1個(gè)零點(diǎn)等價(jià)于與的圖象有1個(gè)交點(diǎn).記,則過原點(diǎn)作的切線,設(shè)切點(diǎn)為,則切線方程為,又切線過原點(diǎn),即,將,代入解得.所以切線斜率為,所以或.故選:C【點(diǎn)睛】本題考查了導(dǎo)數(shù)在函數(shù)零點(diǎn)問題中的應(yīng)用,考查了學(xué)生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于較難題.3、A【解析】
先化簡求出,即可求得答案.【詳解】因?yàn)椋运怨蔬x:A【點(diǎn)睛】此題考查復(fù)數(shù)的基本運(yùn)算,注意計(jì)算的準(zhǔn)確度,屬于簡單題目.4、C【解析】
將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點(diǎn)睛】本題考查向量的幾何意義,考查向量的線性運(yùn)算,將用向量和表示是關(guān)鍵,是基礎(chǔ)題.5、D【解析】
作出不等式對(duì)應(yīng)的平面區(qū)域,由目標(biāo)函數(shù)的幾何意義,通過平移即可求z的最大值.【詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內(nèi)平移當(dāng)過點(diǎn)時(shí),取得最大值.由得:,故選:D【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法,屬于基礎(chǔ)題.6、D【解析】
由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點(diǎn)睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.7、C【解析】
根據(jù)題意,由函數(shù)的奇偶性可得,,又由,結(jié)合函數(shù)的單調(diào)性分析可得答案.【詳解】根據(jù)題意,函數(shù)是定義在上的偶函數(shù),則,,有,又由在上單調(diào)遞增,則有,故選C.【點(diǎn)睛】本題主要考查函數(shù)的奇偶性與單調(diào)性的綜合應(yīng)用,注意函數(shù)奇偶性的應(yīng)用,屬于基礎(chǔ)題.8、A【解析】
將fx整理為3sinωx+π3,根據(jù)x的范圍可求得ωx+π3∈π【詳解】f當(dāng)x∈0,π時(shí),又f0=3sin由fx在0,π上的值域?yàn)?2解得:ω∈本題正確選項(xiàng):A【點(diǎn)睛】本題考查利用正弦型函數(shù)的值域求解參數(shù)范圍的問題,關(guān)鍵是能夠結(jié)合正弦型函數(shù)的圖象求得角的范圍的上下限,從而得到關(guān)于參數(shù)的不等式.9、A【解析】
結(jié)合所給數(shù)字特征,我們可將每層數(shù)字表示成2的指數(shù)的形式,觀察可知,每層指數(shù)的和成等比數(shù)列分布,結(jié)合等比數(shù)列前項(xiàng)和公式和對(duì)數(shù)恒等式即可求解【詳解】如圖,將數(shù)字塔中的數(shù)寫成指數(shù)形式,可發(fā)現(xiàn)其指數(shù)恰好構(gòu)成“楊輝三角”,前10層的指數(shù)之和為,所以原數(shù)字塔中前10層所有數(shù)字之積為.故選:A【點(diǎn)睛】本題考查與“楊輝三角”有關(guān)的規(guī)律求解問題,邏輯推理,等比數(shù)列前項(xiàng)和公式應(yīng)用,屬于中檔題10、A【解析】
首先判斷函數(shù)的奇偶性,再根據(jù)特殊值即可利用排除法解得;【詳解】解:依題意,,故函數(shù)為偶函數(shù),圖象關(guān)于軸對(duì)稱,排除C;而,排除B;,排除D.故選:.【點(diǎn)睛】本題考查函數(shù)圖象的識(shí)別,函數(shù)的奇偶性的應(yīng)用,屬于基礎(chǔ)題.11、A【解析】
根據(jù)題意,用表示出與,求出的值即可.【詳解】解:根據(jù)題意,設(shè),則,又,,,故選:A.【點(diǎn)睛】本題主要考查了平面向量基本定理的應(yīng)用,關(guān)鍵是要找到一組合適的基底表示向量,是基礎(chǔ)題.12、B【解析】
把4名大學(xué)生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個(gè)鄉(xiāng)鎮(zhèn)即得.【詳解】把4名大學(xué)生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個(gè)鄉(xiāng)鎮(zhèn),則不同的分配方案有種.故選:.【點(diǎn)睛】本題考查排列組合,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由分層抽樣的知識(shí)可得,即,所以高三被抽取的人數(shù)為,應(yīng)填答案.14、【解析】
由已知,在上有3個(gè)根,分,,,四種情況討論的單調(diào)性、最值即可得到答案.【詳解】由已知,的周期為4,且至多在上有4個(gè)根,而含505個(gè)周期,所以在上有3個(gè)根,設(shè),,易知在上單調(diào)遞減,在,上單調(diào)遞增,又,.若時(shí),在上無根,在必有3個(gè)根,則,即,此時(shí);若時(shí),在上有1個(gè)根,注意到,此時(shí)在不可能有2個(gè)根,故不滿足;若時(shí),要使在有2個(gè)根,只需,解得;若時(shí),在上單調(diào)遞增,最多只有1個(gè)零點(diǎn),不滿足題意;綜上,實(shí)數(shù)的范圍為.故答案為:【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)個(gè)數(shù)問題,涉及到函數(shù)的周期性、分類討論函數(shù)的零點(diǎn),是一道中檔題.15、【解析】
如圖所示,正四棱錐,為底面的中心,點(diǎn)為的中點(diǎn),則,設(shè),根據(jù)正四棱錐的側(cè)面積求出的值,再利用勾股定理求得正四棱錐的高,代入體積公式,即可得到答案.【詳解】如圖所示,正四棱錐,為底面的中心,點(diǎn)為的中點(diǎn),則,設(shè),,,,,,.故答案為:.【點(diǎn)睛】本題考查棱錐的側(cè)面積和體積,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運(yùn)算求解能力.16、39【解析】
設(shè)等差數(shù)列公差為d,首項(xiàng)為,再利用基本量法列式求解公差與首項(xiàng),進(jìn)而求得即可.【詳解】設(shè)等差數(shù)列公差為d,首項(xiàng)為,根據(jù)題意可得,解得,所以.故答案為:39【點(diǎn)睛】本題考查等差數(shù)列的基本量計(jì)算以及前n項(xiàng)和的公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(Ⅰ)當(dāng)時(shí),不等式為.若,則,解得或,結(jié)合得或.若,則,不等式恒成立,結(jié)合得.綜上所述,不等式解集為.(Ⅱ)則的圖象與直線所圍成的四邊形為梯形,令,得,令,得,則梯形上底為,下底為11,高為..化簡得,解得,結(jié)合,得的取值范圍為.點(diǎn)睛:含絕對(duì)值不等式的解法有兩個(gè)基本方法,一是運(yùn)用零點(diǎn)分區(qū)間討論,二是利用絕對(duì)值的幾何意義求解.法一是運(yùn)用分類討論思想,法二是運(yùn)用數(shù)形結(jié)合思想,將絕對(duì)值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時(shí)強(qiáng)化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動(dòng)向.18、(Ⅰ)證明見解析;(Ⅱ)【解析】
(Ⅰ)證明,根據(jù)得到,得到證明.(Ⅱ)如圖所示,分別以為軸建立空間直角坐標(biāo)系,平面的法向量,,計(jì)算向量夾角得到答案.【詳解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如圖所示:分別以為軸建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量,則,即,取得到,,設(shè)直線與平面所成角為故.【點(diǎn)睛】本題考查了線面垂直,線面夾角,意在考查學(xué)生的空間想象能力和計(jì)算能力.19、(1)有的把握認(rèn)為是否戴口罩出行的行為與年齡有關(guān).(2)【解析】
(1)根據(jù)列聯(lián)表和獨(dú)立性檢驗(yàn)的公式計(jì)算出觀測值,從而由參考數(shù)據(jù)作出判斷.(2)因?yàn)闃颖局谐鲂胁淮骺谡值木用裼?0人,其中年輕人有10人,用樣本估計(jì)總體,則出行不戴口罩的年輕人的概率為,是老年人的概率為.根據(jù)獨(dú)立重復(fù)事件的概率公式即可求得結(jié)果.【詳解】(1)由題意可知,有的把握認(rèn)為是否戴口罩出行的行為與年齡有關(guān).(2)由樣本估計(jì)總體,出行不戴口罩的年輕人的概率為,是老年人的概率為.人未戴口罩,恰有2人是青年人的概率.【點(diǎn)睛】本題主要考查獨(dú)立性檢驗(yàn)及獨(dú)立重復(fù)事件的概率求法,難度一般.20、(1)(2)【解析】
(1)先消去參數(shù),化為直角坐標(biāo)方程,再利用求解.(2)直線與曲線方程聯(lián)立,得,求得弦長和點(diǎn)到直線的距離,再求的面積.【詳解】(1)由已知消去得,則,所以,所以直線的極坐標(biāo)方程為.(2)由,得,設(shè),兩點(diǎn)對(duì)應(yīng)的極分別為,,則,,所以,又點(diǎn)到直線的距離所以【點(diǎn)睛】本題主要考查參數(shù)方程、直角坐標(biāo)方程及極坐標(biāo)方程的轉(zhuǎn)化和直線與曲線的位置關(guān)系,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.21、(Ⅰ);(Ⅱ);(Ⅲ)證明見解析.【解析】試題分析:將,求出切線方程求導(dǎo)后討論當(dāng)時(shí)和時(shí)的單調(diào)性證明,求出實(shí)數(shù)的取值范圍先求出、的通項(xiàng)公式,利用當(dāng)時(shí),得,下面證明:解析:(Ⅰ)因?yàn)?,所以,,切點(diǎn)為.由,所以,所以曲線在處的切線方程為,即(Ⅱ)由,令,則(當(dāng)且僅當(dāng)取等號(hào)).故在上為增函數(shù).①當(dāng)時(shí),,故在上為增函數(shù),所以恒成立,故符合題意;②當(dāng)時(shí),由于,,根據(jù)零點(diǎn)存在定理,必存在,使得,由于在上為增函數(shù),故當(dāng)時(shí),,故在上為減函數(shù),所以當(dāng)時(shí),,故在上不恒成立,所以不符合題意.綜上所述,實(shí)數(shù)的取值范圍為(III)證明:由由(Ⅱ)知當(dāng)時(shí),,故當(dāng)時(shí),,故,故.下面證明:因?yàn)槎?,所以,,即:點(diǎn)睛:本題考查了利用導(dǎo)數(shù)的幾何意義求出參數(shù)及證明不等式成立,借助第二問的證明過程,利用導(dǎo)數(shù)的單調(diào)性證明數(shù)列的不等式,在求解的過程中還要求出數(shù)列的和,計(jì)算較為復(fù)雜,本題屬于難題.22、(1)或;(2)證明見
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 新教材高考地理二輪復(fù)習(xí)三10個(gè)長效熱點(diǎn)綜合專項(xiàng)訓(xùn)練熱點(diǎn)5工業(yè)與服務(wù)業(yè)含答案
- 陜西省咸陽市渭城區(qū)第二初級(jí)中學(xué)2024-2025學(xué)年九年級(jí)上學(xué)期期中考試物理試卷
- 遼寧省沈陽市五校協(xié)作體2024-2025學(xué)年高二上學(xué)期11月期中考試語文試題(含答案)
- 江蘇省高郵市2024-2025學(xué)年高三第一學(xué)期10月學(xué)情調(diào)研測試語文試題(解析版)
- 廣東省韶關(guān)市翁源縣2024-2025學(xué)年七年級(jí)上學(xué)期期中生物試題(含答案)
- 2024-2025學(xué)年陜西省西安市長安區(qū)五年級(jí)(上)月考語文試卷(有答案)
- 2024年哈爾濱輔警勞動(dòng)合同
- 黃石模具課程設(shè)計(jì)實(shí)訓(xùn)
- 標(biāo)準(zhǔn)開荒保潔承包合同文本
- 工程合同分類解讀
- 珍愛生命主題班會(huì)
- 《網(wǎng)絡(luò)數(shù)據(jù)安全管理?xiàng)l例》課件
- 陳皮倉儲(chǔ)合同模板例子
- 2024年安全生產(chǎn)月全國安全生產(chǎn)知識(shí)競賽題庫及答案(共六套)
- 2024-2025學(xué)年滬教版小學(xué)四年級(jí)上學(xué)期期中英語試卷及解答參考
- 消除“艾梅乙”醫(yī)療歧視-從我做起
- DB23T 3844-2024煤礦地區(qū)地震(礦震)監(jiān)測臺(tái)網(wǎng)技術(shù)要求
- 《阿凡達(dá)》電影賞析
- DB42-T 2286-2024 地鐵冷卻塔衛(wèi)生管理規(guī)范
- 合作伙伴合同協(xié)議書范文5份
- 八年級(jí)歷史上冊(cè)(部編版)第六單元中華民族的抗日戰(zhàn)爭(大單元教學(xué)設(shè)計(jì))
評(píng)論
0/150
提交評(píng)論