版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第十五章二次根式知識(shí)歸納與題型突破(題型清單)
01思維導(dǎo)圖
二次根式的概念
二次根式二次根式有無(wú)意義
二次根式的性質(zhì)
二次根式二次根式的乘法
二次根式的除法
一次根式最簡(jiǎn)一次根式
的運(yùn)算同類二欠根式
二次根式的加減法
二次根式的混合運(yùn)算
02知識(shí)速記
一.二次根式
1.二次根式的概念:一般地,我們把形如癡(a20)的式子的式子叫做二次根式,,”稱為
稱為二次根號(hào).如6,75Z點(diǎn)都是二次根式.
2.二次根式滿足條件:(1)必須含有二次根號(hào)?”;(2)被開(kāi)方數(shù)必須是非負(fù)數(shù).
二.二次根式有無(wú)意義的條件
1.二次根式有意義:被開(kāi)方數(shù)為非負(fù)數(shù),即指有意義oa20;
2.二次根式無(wú)意義:被開(kāi)方數(shù)為負(fù)數(shù),即后無(wú)意義oa<0;
三.二次根式的性質(zhì)
1.二次根式五(a>0)的非負(fù)性
夜(a>0)表示。的算術(shù)平方根,也就是說(shuō),&(a>0)是一個(gè)非負(fù)數(shù),即620
(〃20).
試卷第1頁(yè),共12頁(yè)
2.二次根式的性質(zhì):(0=a(a>0)
3.二次根式病的性質(zhì):行=問(wèn)={:優(yōu)2)
四.二次根式的乘法法則
1.二次根式的乘法法則:4a-4b=4ab(a>0,b>0)(二次根式相乘,把被開(kāi)方數(shù)相乘,根
的指數(shù)不變)
2.二次根式的乘法法則的推廣:
(1)4a-4b-Vc=Jabc(tz>0,/>>0,c>0)
(2)a4b-c4d=ac4bd(b>0,d>0),即當(dāng)二次根式前面有系數(shù)時(shí),可類比單項(xiàng)式乘單項(xiàng)式
的法則進(jìn)行計(jì)算,即將系數(shù)之積作為系數(shù),被開(kāi)方數(shù)之積作為被開(kāi)方數(shù).
3.二次根式的乘法法則的逆用:瓢=&.瓜1120,1)20)(二次根式的乘法法則的逆用實(shí)為
積的算數(shù)平方根的性質(zhì))
4.二次根式的乘法法則的逆用的推廣:VScd=4a-4b-4c-y/dCa>0,b>0,c>0,d>0)
五.二次根式的除法法則
1.二次根式的除法法則:乎=?(。20,6>0)(二次根式相除,把被開(kāi)方數(shù)相除,根指數(shù)
不變)
2.二次根式的除法法則的推廣:=Ub-c(a>0,fe>0,c>0).
六.最簡(jiǎn)二次根式
1.最簡(jiǎn)二次根式的概念:(1)被開(kāi)方數(shù)不含分母,(2)被開(kāi)方數(shù)中不含能開(kāi)方開(kāi)得盡得因數(shù)
或因式
2.化簡(jiǎn)二次根式的一般方法
舉
方法
例
y/s=
將被開(kāi)方數(shù)中能開(kāi)得盡得因數(shù)或因式進(jìn)行開(kāi)方
試卷第2頁(yè),共12頁(yè)
若被開(kāi)方數(shù)中含有帶分?jǐn)?shù),先將被開(kāi)方數(shù)化成假分?jǐn)?shù)/I
若被開(kāi)方數(shù)中含有小數(shù),先將小數(shù)化成分?jǐn)?shù)
化去根號(hào)下的
分母
(Q
>
若被開(kāi)方數(shù)時(shí)分式,先將分式分母化成能轉(zhuǎn)化為平方的形式,再進(jìn)
0,b
行開(kāi)方運(yùn)算
>
0,c
>
0)
(x
被開(kāi)方數(shù)時(shí)多項(xiàng)式的要先因式分解>0,
y>0
)
3.分母有理化
分母有理化:當(dāng)分母含有根式時(shí),依據(jù)分式的基本性質(zhì)化去分母中的根號(hào)。
方法:根據(jù)分式的基本性質(zhì),將分子和分母都乘上分母的“有理化因式”,化去分母中的根號(hào).
七.同類二次根式
1.同類二次根式概念:化簡(jiǎn)后被開(kāi)方數(shù)相同的二次根式叫做同類二次根式。
2.合并同類二次根式的方法:把根號(hào)外的因數(shù)(式)相加,根指數(shù)和被開(kāi)方數(shù)不變,合并的
依據(jù)式乘法分配律,如+=(m+〃)及20)
八.二次根式的加減
試卷第3頁(yè),共12頁(yè)
1.二次根式加減法則:先將二次根式化成最簡(jiǎn)二次根式,再將被開(kāi)方數(shù)相同的二次根式進(jìn)行
合并。
2.二次根式加減運(yùn)算的步驟:
①化:將各個(gè)二次根式化成最簡(jiǎn)二次根式;
②找:找出化簡(jiǎn)后被開(kāi)方數(shù)相同的二次根式;
③合:合并被開(kāi)方數(shù)相同的二次根式一^將系數(shù)相加作為和的系數(shù),根指數(shù)與被開(kāi)方數(shù)保
持不變。
九.二次根式的混合運(yùn)算
二次根式的混合運(yùn)算順序與整式的混合運(yùn)算順序一樣:先乘方,再乘除,最后加減,有括
號(hào)的先算括號(hào)里面的(或先去掉括號(hào))
03題型歸納
題型一判斷是否為二次根式
例題:(23-24八年級(jí)下?內(nèi)蒙古呼和浩特?期末)
1.下列式子不是二次根式的是()
A.aB.C.后
鞏固訓(xùn)練
(23-24九年級(jí)上?四川宜賓?期末)
2.下列各式是二次根式的是()
A.4sB.V-2C.-兀D.^3
(23-24八年級(jí)下?廣西百色?期中)
3.下列各式中一定是二次根式的是()
A.0B.%C.*D.-y[6
(23-24八年級(jí)下?浙江麗水?期末)
4.要使后與在實(shí)數(shù)范圍內(nèi)有意義,x可以取的數(shù)是()
A.-2B.0C.1D.2
(23-24八年級(jí)下?廣西河池?期中)
5.下列各式中,一定是二次根式的是()
試卷第4頁(yè),共12頁(yè)
A.V=4B.技C.^27D.7m2+1
題型二求二次根式的值
例題:(23-24八年級(jí)下?浙江衢州?期中)
6.當(dāng)%=-2時(shí),二次根式J-3%+10的值為()
A.2B.±2C.4D.±4
鞏固訓(xùn)練
(23-24八年級(jí)下?浙江杭州?期中)
7.當(dāng)。=6時(shí),二次根式Ja-2的值為()
A.1B.2C.3D.4
(23-24九年級(jí)上?海南僧州?期末)
8.當(dāng)%=-1時(shí),二次根式j(luò)3x+7的值為()
A.±2B.2C.-2D.41
(23-24八年級(jí)下?浙江杭州?期末)
9.當(dāng)x=l時(shí),二次根式行7的值為()
A.4B.y/6C.6D.2
題型三根據(jù)二次根式有意義條件求范圍
例題:(23-24八年級(jí)下?遼寧營(yíng)口?期末)
10.若二次根式右不有意義,則實(shí)數(shù)x的取值范圍是()
A."3B.x>3C.x>-3D.x<3
鞏固訓(xùn)練
(23-24八年級(jí)下?山東聊城?期末)
11.若二次根式j(luò)3-2x有意義,則x的取值范圍是().
3333
A.xN-B.xW—C.x>一D.x<—
2222
(23-24八年級(jí)下?新疆和田?期中)
12.使次=I+Jx+4有意義的字母x的取值范圍()
A.全體實(shí)數(shù)B.x<2C.x>-4D.-4<x<2
試卷第5頁(yè),共12頁(yè)
(2024?貴州銅仁?一模)
13.若衣與在實(shí)數(shù)范圍內(nèi)有意義,則實(shí)數(shù)x的取值范圍是.
(2024?湖北?模擬預(yù)測(cè))
14.當(dāng)x取何值時(shí),二次根式立巨有意義:
x-3
(24-25八年級(jí)下?吉林?階段練習(xí))
15.使式子也三有意義的x的取值范圍是.
2+x
題型四根據(jù)二次根式有意義求值
例題:(23-24八年級(jí)下?吉林松原?期中)
16.若?=Jx-4+J4-X+5,則,2砂=.
鞏固訓(xùn)練
(23-24八年級(jí)下?四川綿陽(yáng)?期中)
17.已知X、了為實(shí)數(shù),且尸&^+&-3尤+3,貝ijx+y的值為
(23-24八年級(jí)下?湖北荊州?階段練習(xí))
18.已知實(shí)數(shù)x,y滿足>=7^+萬(wàn)工+3,則歷的小數(shù)部分是
(23-24八年級(jí)下?山東煙臺(tái)?期中)
19.已知<=Jv-5+j5-x+2,貝.
題型五二次根式的乘除混合運(yùn)算
例題:(2024八年級(jí)下?安徽?專題練習(xí))
20.計(jì)算:2舊義之+3五.
4
鞏固訓(xùn)練
(23-24七年級(jí)下?上海楊浦?期中)
21.計(jì)算:-V3xV2^-V3xV2.
42
(23-24八年級(jí)下?吉林?期中)
22.計(jì)算:V3x3>/25-J1.
(23-24八年級(jí)下?全國(guó)?假期作業(yè))
23.計(jì)算:
試卷第6頁(yè),共12頁(yè)
(1)A/27XV50-V6;
(4)Sy/a1b+2疝(a>0,6>0).
題型六最簡(jiǎn)二次根式的判斷
例題:(23-24九年級(jí)上?河南洛陽(yáng)?期中)
24.下列二次根式,是最簡(jiǎn)二次根式的是()
A.J/+/B.J4C.V18
鞏固訓(xùn)練
(23-24九年級(jí)上?河北邢臺(tái)?期末)
25.下列二次根式中,最簡(jiǎn)二次根式是()
A.272B.C.V?D.727
(23-24八年級(jí)下?山東濟(jì)寧?階段練習(xí))
26.下列根式是最簡(jiǎn)二次根式的是().
A.MB.J2a3bC..
D.y/x2+y,
(23-24八年級(jí)下?河北保定?期末)
27.關(guān)于下列二次根式:①42+1;②正稔;③亞;④26;⑤七;⑥&?小
紅說(shuō):“最簡(jiǎn)二次根式只有①④.“小亮說(shuō):‘'我認(rèn)為最簡(jiǎn)二次根式只有③⑥.”則()
A.小紅說(shuō)的對(duì)B.小亮說(shuō)的對(duì)
C.小紅和小亮合在一起對(duì)D.小紅和小亮合在一起也不對(duì)
題型七化為最簡(jiǎn)二次根式
例題:(23-24八年級(jí)上?廣東佛山?階段練習(xí))
28.化簡(jiǎn):Vs=________;.=________?
鞏固訓(xùn)練
(23-24八年級(jí)上?廣東肇慶?階段練習(xí))
試卷第7頁(yè),共12頁(yè)
29.化簡(jiǎn):出|=-------,--------------
(23-24八年級(jí)下?浙江?期中)
30.化簡(jiǎn)成最簡(jiǎn)二次根式:5Vi^=_;6^|=—
(22-23八年級(jí)上?寧夏銀川?階段練習(xí))
31.化簡(jiǎn):
⑵百
(23-24八年級(jí)?全國(guó)?假期作業(yè))
32.把下列二次根式化為最簡(jiǎn)二次根式:
⑴后;
⑶孕
⑷得;
(5)214/b2c(a,b,c均大于0).
題型八同類二次根式的判斷
例題:(23-24八年級(jí)下?江西上饒?期中)
33.下列根式中,與也是同類二次根式的是()
A.V24B.V12C.g
D.V32
鞏固訓(xùn)練
(23-24八年級(jí)下?江蘇淮安?期末)
34.下列二次根式中,與后是同類二次根式的是()
A.VO5B.V30C.725
(2023?廣西來(lái)賓?一模)
試卷第8頁(yè),共12頁(yè)
35.下列各組二次根式中,屬于同類二次根式的是()
A.而和用B.而和回iC.1和自
D.
(23-24七年級(jí)下?上海浦東新?階段練習(xí))
36.下列各組二次根式中,為同類二次根式的是()
A.§卡和3&B.y[a^0
C.舊和心D.6和囪
題型九二次根式的加減運(yùn)算
例題:(24-25八年級(jí)上?全國(guó)?課后作業(yè))
37.計(jì)算:
(1)屈+3&2收
(2)273-3712+5727.
鞏固訓(xùn)練
(2024九年級(jí)上?全國(guó)?專題練習(xí))
38.計(jì)算而厲
8
(23-24八年級(jí)下?廣西河池?期中)
39.計(jì)算:V8+2V3-(V27+V2).
(23-24八年級(jí)下?山東聊城?階段練習(xí))
40.計(jì)算:
(1)V27-V12+^|;
⑵卜屈-6厲+4后)+6.
題型十二次根式的混合運(yùn)算
例題:(23-24八年級(jí)下?山西太原?單元測(cè)試)
41.計(jì)算:
6
試卷第9頁(yè),共12頁(yè)
鞏固訓(xùn)練
(23-24七年級(jí)下?湖北孝感?單元測(cè)試)
42.計(jì)算:
⑴g-1+2xJ(-3)2;
⑵近(石+1),2-斯147.
(23-24八年級(jí)上?寧夏中衛(wèi)?期末)
43.化簡(jiǎn).
(1)(3+V7)(3-V7)+V2(2-V2);
(2)3V12-3^1+V27
(3)V12-V3+A
(4)而嚴(yán)一40
(23-24八年級(jí)下?山東日照?期末)
44.計(jì)算:
⑵圾+木一11+2T
題型十一比較二次根式的大小
例題:(23-24八年級(jí)下?浙江寧波?開(kāi)學(xué)考試)
45.比較大?。?/p>
(1)V15+V178;
(2)V2014-V2015V2015-V2016.
鞏固訓(xùn)練
(23-24八年級(jí)下?江蘇宿遷?階段練習(xí))
46.比較下列實(shí)數(shù)的大?。?762y/13.
(23-24七年級(jí)下?上海?期末)
試卷第10頁(yè),共12頁(yè)
47.比較大?。?273-372.(填“>”,"=",或“<”)
(23-24八年級(jí)下?河北邢臺(tái)?期末)
48.比較大?。?+6/耳.(填"或"=")
題型十二已知字母的值,化簡(jiǎn)求值
例題:(23-24八年級(jí)下?云南曲靖?階段練習(xí))
49.計(jì)算:已知,x=2->/3,了=2+6,求V+y2一中的值.
鞏固訓(xùn)練
(23-24八年級(jí)下?河北承德?期末)
50.若工=退+1,y=V5-1,求下列各式的值.
(1/+>;
⑵(工+才―—".
(23-24八年級(jí)下?廣東汕尾?期末)
51.已知〃=行+2)=J7-2,求下列代數(shù)式的值
(1)6Z;
(2)a2-2ab+b2.
(23-24八年級(jí)下?海南省直轄縣級(jí)單位?期中)
52.已知°=3+g,6=3-V7,求下列各式的值:
⑴。+6和ab;
(2)6t~+ab+Z?~.
題型十三已知條件式,化簡(jiǎn)求值
例題:(23-24八年級(jí)下?甘肅武威?期中)
53.已知x+y=-5,爐=4,求的值.
鞏固訓(xùn)練
(2024?湖南懷化?一模)
54.已知實(shí)數(shù)x滿足J(2021-4+Jx-2022=x,求X-202F的值.
(23-24八年級(jí)下?福建廈門?階段練習(xí))
試卷第11頁(yè),共12頁(yè)
55.若x,y為實(shí)數(shù),且y=4j2x-l+3jl-2x+l,求正衛(wèi)的值.
2xy
(22-23八年級(jí)上?山西運(yùn)城?期末)
56.若x,>為實(shí)數(shù),且.二Jl-4x+j4x—l+;.求J二+2+)+J±+2-上的值.
試卷第12頁(yè),共12頁(yè)
1.B
【分析】此題主要考查了二次根式的概念,正確把握二次根式的定義是解題關(guān)鍵.
直接利用二次根式的定義分析得出答案.
【詳解】解:A、次是二次根式,故此選項(xiàng)不合題意;
B、當(dāng)3-兀<0時(shí),k?不是二次根式,故此選項(xiàng)符合題意;
C、代是二次根式,故此選項(xiàng)不合題意;
D、《是二次根式,故此選項(xiàng)不合題意;
故選:B.
2.A
【分析】本題考查二次根式的定義,掌握形如血(。>0)的式子是二次根式解題即可.
【詳解】解:A.6是二次根式;
B.口無(wú)意義,不是二次根式;
C.萬(wàn)谷無(wú)意義,不是二次根式;
D.冷,根指數(shù)為3,不是二次根式;
故選A.
3.D
【分析】本題考查了二次根式的定義,根據(jù)二次根式的定義逐一判斷即可求解,熟練掌握式
子夜(a20)叫做二次根式是解題的關(guān)鍵.
【詳解】解:A、-2<0,則后不是二次根式,故不符合題意;
B、乃是三次根式,故不符合題意;
C、-52<0,則廳不是二次根式,故不符合題意;
D、-祈是二次根式,故不符合題意;
故選D.
4.D
【分析】本題考查了二次根式有意義的條件,根據(jù)二次根式有意義的條件為被開(kāi)方數(shù)為非負(fù)
數(shù)即可得出答案.
答案第1頁(yè),共20頁(yè)
【詳解】解:在實(shí)數(shù)范圍內(nèi)有意義,
x—220,
x>2,
故選:D.
5.D
【分析】本題考查二次根式的定義,掌握其定義是解決此題的關(guān)鍵.
形如20)的代數(shù)式叫做二次根式,其中。叫做被開(kāi)方數(shù),據(jù)此逐項(xiàng)判斷即可.
【詳解】解:A、聲中的被開(kāi)方數(shù)-4<0,故不是二次根式,不符合題意;
B、信中的。不一定大于等于0,故不是二次根式,不符合題意;
C、場(chǎng)是三次根式,故不是二次根式,不符合題意;
D、J機(jī)2+1是二次根式,符合題意,
故選:D.
6.C
【分析】本題考查求二次根式的值,先將》=-2代入,再利用二次根式的性質(zhì)化簡(jiǎn)求解即
可.
【詳解】當(dāng)x=-2時(shí),
故選:C.
7.B
【分析】本題主要考查二次根式求值,將。=6代入二次根式,直接求解即可.
【詳解】解:當(dāng)。=6時(shí),y/a—2=J6-2=y/4=2
故選:B.
8.B
【分析】本題主要考查了二次根式的基本性質(zhì)及化簡(jiǎn),二次根式的定義,把尤=-1代入原式
化簡(jiǎn)即可.
【詳解】解:當(dāng)x=T時(shí),原式=j3x(_l)+7=〃=2,
故選:B.
答案第2頁(yè),共20頁(yè)
9.D
【分析】本題考查二次根式的定義,把x=l代入求值即可.
【詳解】解:當(dāng)x=l時(shí),二次根式j(luò)5-x=J5-1="=2,
故選:D.
10.B
【分析】此題主要考查了二次根式有意義的條件,解答此題的關(guān)鍵是掌握二次根式中的被開(kāi)
方數(shù)是非負(fù)數(shù).
根據(jù)二次根式有意義的條件,可得:x-3>0,據(jù)此求出實(shí)數(shù)x的取值范圍即可.
【詳解】解:?.?二次根式有意義,
二.x—320,
解得:x>3.
故選:B.
11.B
【分析】本題考查的是二次根式的意義和性質(zhì).概念:式子20)叫二次根式.性質(zhì):
二次根式被開(kāi)方數(shù)必須為非負(fù)數(shù),否則二次根式無(wú)意義.掌握二次根式被開(kāi)方數(shù)為非負(fù)數(shù)是
解題的關(guān)鍵.
根據(jù)二次根式性質(zhì),被開(kāi)方數(shù)大于等于①列不等式求解.
【詳解】解:由題意得,3-2x20,
3
解得:龍W].
故選:B.
12.C
【分析】本題考查二次根式有意義的條件,根據(jù)二次根式的被開(kāi)方數(shù)為非負(fù)數(shù),進(jìn)行求解即
可.
【詳解】解:由題意,得:%+4>0,解得:x>-4;
故選C.
13.x>3
【分析】本題主要考查了二次根式有意義的條件,解一元一次不等式等知識(shí)點(diǎn),熟練掌握二
次根式有意義的條件是解題的關(guān)鍵.
答案第3頁(yè),共20頁(yè)
由二次根式有意義的條件可得一元一次不等式,解之,即可得解.
【詳解】解:由二次根式有意義的條件可得:X-3N0,
解得:x>3,
故答案為:x>3.
14.xNl且xw3.
【分析】此題考查的是二次根式有意義的條件和分式有意義的條件,根據(jù)條件列出不等式是
解決此題的關(guān)鍵.
二次根式有意義的條件:被開(kāi)方數(shù)20,分式有意義的條件分母片0,列出不等式即可.
【詳解】解:由題意可得:
x-l>0,x-3^0
二x21且xw3.
故答案為:x21且x*3.
15.xVl且xW-2
【分析】本題考查了分式和二次根式有意義的條件.根據(jù)分式的分母不能為0、二次根式的
被開(kāi)方數(shù)大于或等于0列出式子求解即可得.
12+xw0
【詳解】解:由題意得:,、c,
解得xVI且xw-2,
故答案為:xVl且XW-2.
16.2廂
【分析】本題主要考查了二次根式的非負(fù)性、代數(shù)式求值等知識(shí)點(diǎn),根據(jù)二次根式的非負(fù)性
求得x、y的值成為解題的關(guān)鍵.
先根據(jù)二次根式的非負(fù)性求得工,進(jìn)而求得丹然后代入計(jì)算即可.
【詳解】解:y=Vx-4+A/4-X+5,
fx-4>0,
,解得:x=4,
[4-x>0
?,?歹=5,
12xy=J2x4x5=2A/10.
故答案為:2K.
答案第4頁(yè),共20頁(yè)
17.5
【分析】此題主要考查了二次根式有意義的條件,直接利用二次根式有意義的條件得出工的
值,進(jìn)而得出》的值,進(jìn)而得出答案.
【詳解】解:?.?y=VT:I+j6-3x+3,
Jx-2>0
**|6-3x>0,
..x=2,
「?歹=3,
:.x+y=5,
故答案為:5.
18.V6-2##-2+V6
【分析】本題考查二次根式有意義的條件及無(wú)理數(shù)的估算,結(jié)合已知條件求得的值是解
題的關(guān)鍵.
根據(jù)二次根式有意義的條件求得X/的值,然后求出向,利用無(wú)理數(shù)的估算求得小數(shù)部
分.
【詳解】解:由題意可得:x-2>0,2-x>0,
則x=2,y=0+0+3=3,
則4^~,2x3=V6,
4<6<9,
2<逐<3,
則歷的小整數(shù)部分是2,小數(shù)部分是指-2,
故答案為:V6-2.
19.25
【分析】本題考查了二次根式有意義的條件,掌握二次根式有意義的條件,求出x的值是解
題關(guān)鍵;利用二次根式有意義的條件進(jìn)行求解即可;
[x-5>0
【詳解】解:由題意知:L、八,
答案第5頁(yè),共20頁(yè)
解得:x=5,
「?歹=2,
.X=25,
故答案為:25;
20.—y[6
2
【分析】本題考查了二次根式的乘除法的應(yīng)用,根據(jù)二次根式的乘除法法則,系數(shù)相乘除,
被開(kāi)方數(shù)相乘除,根指數(shù)不變,計(jì)算后求出即可.
【詳解】解:2712x4+372
4
=;加
21.1
【分析】本題考查了二次根式的乘除混合運(yùn)算,把除法轉(zhuǎn)化為乘法,約分即可作答.
【詳解】解:
42
=-V64--V3XV2
42
4
=1.
22.15出
【分析】本題主要考查二次根式的乘除,掌握二次根式的乘除的運(yùn)算法則,是解題的關(guān)
鍵.根據(jù)二次根式的乘除混合運(yùn)算法則,即可求解.
【詳解】解:原式=3/3X25+1
=155/2.
23.(1)15
⑵20幾
答案第6頁(yè),共20頁(yè)
(4)色G
b
【分析】本題考查了二次根式的混合運(yùn)算
(1)根據(jù)二次根式乘除法法則計(jì)算即可;
(2)根據(jù)二次根式乘除法法則計(jì)算即可;
(3)根據(jù)二次根式乘除法法則計(jì)算即可;
(4)根據(jù)二次根式乘除法法則計(jì)算即可.
【詳解】⑴解:原式=班義蜒+遍=1/+遍=15
(2)原式=3x?x」45」x色
3V53
【分析】本題考查了最簡(jiǎn)二次根式,滿足以下兩個(gè)條件:①被開(kāi)方數(shù)不含分母;②被開(kāi)方
數(shù)中不含能開(kāi)得盡方的因數(shù)或因式,像這樣的二次根式叫做最簡(jiǎn)二次根式,由此判斷即
可.
【詳解】解:A、八彳廬是最簡(jiǎn)二次根式,故此選項(xiàng)符合題意;
B、被開(kāi)方數(shù)含有能開(kāi)得盡方的因數(shù)4,所以不是最簡(jiǎn)二次根式,故此選項(xiàng)不符合題意;
C、被開(kāi)方數(shù)含有能開(kāi)得盡方的因數(shù)9,所以不是最簡(jiǎn)二次根式,故此選項(xiàng)不符合題意;
D、被開(kāi)方數(shù)含有分母,所以不是最簡(jiǎn)二次根式,故此選項(xiàng)不符合題意;
故選:A.
25.A
【分析】本題考查了最簡(jiǎn)二次根式,熟練掌握最簡(jiǎn)二次根式的性質(zhì)是解題的關(guān)鍵.
根據(jù)最簡(jiǎn)二次根式的性質(zhì)判斷即可.當(dāng)二次根式滿足一下條件即為最簡(jiǎn)二次根式:①被開(kāi)
方數(shù)不含開(kāi)的盡方的數(shù)或式;②根號(hào)內(nèi)沒(méi)有分母.
【詳解】A.2行,是最簡(jiǎn)二次根式,故該選項(xiàng)符合題意;
答案第7頁(yè),共20頁(yè)
B.、口=變,不是最簡(jiǎn)二次根式,故該選項(xiàng)不符合題意;
V22
C."=2,不是最簡(jiǎn)二次根式,故該選項(xiàng)不符合題意;
D.后=3百,不是最簡(jiǎn)二次根式,故該選項(xiàng)不符合題意;
故選A.
26.D
【分析】此題主要考查了最簡(jiǎn)二次根式,關(guān)鍵是掌握最簡(jiǎn)二次根式的條件.根據(jù)最簡(jiǎn)二次根
式的概念:(1)被開(kāi)方數(shù)不含分母;(2)被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式進(jìn)行分析
即可.
【詳解】解:A、&=2應(yīng),故此選項(xiàng)錯(cuò)誤;
B、7^^=問(wèn)"石,故此選項(xiàng)錯(cuò)誤;
c、、口=迫,故此選項(xiàng)錯(cuò)誤;
V33
D、舊+y4是最簡(jiǎn)二次根式,故此選項(xiàng)正確;
故選D.
27.C
【分析】本題主要考查了最簡(jiǎn)二次根式,正確把握最簡(jiǎn)二次根式的定義是解題關(guān)鍵.
直接利用最簡(jiǎn)二次根式的定義分析判斷即可解答.
【詳解】解:①正石,③逝,④2百,⑥而是最最簡(jiǎn)二次根式;②而乙⑤I
不是最簡(jiǎn)二次根式.
故小紅和小亮合在一起對(duì).
故選:C.
28.272
【分析】本題考查了二次根式的化簡(jiǎn),根據(jù)二次根式乘法和除法法則進(jìn)行化簡(jiǎn)即可.
【詳解】解:V8=V4^2=74x72=2^/2,
V2"2><2.2,
故答案為:2亞,逅
2
答案第8頁(yè),共20頁(yè)
【分析】根據(jù)二次根式的性質(zhì)進(jìn)行化簡(jiǎn)即可求解.
【詳解】解:、陛,;
V255
44
故答案為:—,—.
【點(diǎn)睛】本題考查了二次根式的化簡(jiǎn),掌握二次根式的性質(zhì)是解題的關(guān)鍵.
30.1073半##'&
【詳解】直接根據(jù)最簡(jiǎn)二次根式的概念:(1)被開(kāi)方數(shù)不含分母;(2)被開(kāi)方數(shù)中不含能開(kāi)
得盡方的因數(shù)或因式.進(jìn)行計(jì)算即可.
【解答】解:5vly=5xV?^=5x26=10&;■
Vo42
故答案為:IO。;3瓜.
2
【點(diǎn)睛】本題主要考查了二次根式的化簡(jiǎn),正確計(jì)算是解題的關(guān)鍵.
(2)3百
【分析】(1)(2)(3)利用二次根式的性質(zhì)化簡(jiǎn)即可.
【詳解】(1)解:居二肉二哈
(2)V27=73^9=3^/3;
0、/T6回
⑶依=忑=石.
【點(diǎn)睛】本題考查了二次根式的化簡(jiǎn),解題的關(guān)鍵是掌握二次根式的性質(zhì).
32.⑴平
⑵等
(3)73
答案第9頁(yè),共20頁(yè)
噂
(5)4aby[ac
【分析】(1)直接計(jì)算得到答案;
(2)直接計(jì)算得到答案;
(3)直接計(jì)算得到答案;
(4)直接計(jì)算得到答案;
(5)直接計(jì)算得到答案.
【詳解】(1)
故后的最簡(jiǎn)二次根式為:孚
(2)^40V4xlO2710
故J|的最簡(jiǎn)二次根式為:2麗
5
故苧的最簡(jiǎn)二次根式為:6
正
3740-3j4x5x26后血30
故半的最簡(jiǎn)二次根式為:蟲(chóng)_;
314030
(5),.,a,b,c均大于0
2A/4a%2c=4abs[ac-
【點(diǎn)睛】本題考查二次根式的性質(zhì),解題的關(guān)鍵是熟練掌握二次根式的相關(guān)知識(shí).
33.D
【分析】本題考查了同類二次根式的定義,解題的關(guān)鍵是正確化簡(jiǎn)二次根式.先進(jìn)行化簡(jiǎn),
然后根據(jù)同類二次根式的定義,即可得到答案.
【詳解】解:A、后=2幾與0不是同類二次根式,故不符合題意;
B、疵=2。與逝不是同類二次根式,故不符合題意;
答案第10頁(yè),共20頁(yè)
c、J)=g與血不是同類二次根式,故不符合題意;
D、反=4&與也是同類二次根式,故符合題意;
故選:D.
34.D
【分析】本題考查同類二次根式的識(shí)別,掌握定義是解題的關(guān)鍵,即:二次根式化成最簡(jiǎn)二
次根式后,被開(kāi)方數(shù)相同的二次根式叫做同類二次根式.首先化簡(jiǎn)二次根式,然后根據(jù)同類
二次根式的定義即可判定.
【詳解】解:屈=也,與右不是同類二次根式,故A選項(xiàng)不合題意;
2
病不能化簡(jiǎn),與質(zhì)不是同類二次根式,故B選項(xiàng)不合題意;
后=5,與右不是同類二次根式,故C選項(xiàng)不合題意;
,與后是同類二次根式,故D選項(xiàng)符合題意;
故選:D.
35.D
【分析】本題考查了同類二次根式的知識(shí),屬于基礎(chǔ)題,解答本題需要掌握二次根式的化簡(jiǎn)
法則及同類二次根式的被開(kāi)方數(shù)相同.將各選項(xiàng)中的二次根式化為最簡(jiǎn),然后根據(jù)同類二次
根式的被開(kāi)方數(shù)相同即可判斷出答案.
【詳解】解:A.745=375,即匹和尼不是同類二次根式,故本選項(xiàng)不符合題意;
B.廝=3品,即屈和7^7不是同類二次根式,故本選項(xiàng)不符合題意;
c.小鼻,即A和不是同類二次根式’故本選項(xiàng)不符合題意;
D.《=字,-V18=-3V2,即上和是同類二次根式,故本選項(xiàng)符合題意;
故選:D.
36.C
【分析】本題主要考查了同類二次根式.將二次根式化成最簡(jiǎn)二次根式后,被開(kāi)方數(shù)相同,
這樣的二次根式叫做同類二次根式.根據(jù)同類二次根式的定義逐項(xiàng)判斷即可解答.
【詳解】解:A、g痛與3垃的被開(kāi)方數(shù)不同,所以它們不是同類二次根式;故本選項(xiàng)錯(cuò)誤;
B、山與而的被開(kāi)方數(shù)不同,所以它們不是同類二次根式;故本選項(xiàng)錯(cuò)誤;
答案第11頁(yè),共20頁(yè)
c、疝"與1邛的被開(kāi)方數(shù)相同,所以它們是同類二次根式;故本選項(xiàng)正確;
D、G與?=3的被開(kāi)方數(shù)不同,所以它們不是同類二次根式;故本選項(xiàng)錯(cuò)誤;
故選:C.
37.(1)50
⑵116
【分析】本題考查二次根式的加減運(yùn)算:
(1)先把二次根式化為最簡(jiǎn)二次根式,然后合并即可;
(2)先把二次根式化為最簡(jiǎn)二次根式,然后合并即可.
【詳解】(1)解:V32+3^1
=4后一"
22
=5后;
(2)解:273-3V12+5727
=273-673+1573
=11^3.
38.5-*/2H—V3
3
【分析】本題主要考查了二次根式的混合運(yùn)算,先化簡(jiǎn)各二次根式,再合并即可.
【詳解】解:V32-5/27
/o
=472--+V2+3V3
3
=572--+373
3
=5>/2+-V3.
3
39.V2-V3
【分析】本題考查二次根式的加減運(yùn)算,先化簡(jiǎn),去括號(hào),再合并同類二次根式即可.
【詳解】解:原式=28+26-3省-亞
=V2--s/3
答案第12頁(yè),共20頁(yè)
40.⑴于
(2)3A/3+4V15
【分析】本題考查了二次根式的加減.
(1)先將各個(gè)二次根式化簡(jiǎn),再進(jìn)行計(jì)算即可;
(2)先將各個(gè)二次根式化簡(jiǎn),再進(jìn)行計(jì)算即可.
【詳解】(1)解:亞-屈+J
=373-273+—
3
473
一?
3
(2)解:(5/一6厲+4而)+6
=204-18G+4而+道
=3他+4屈.
41.(1)2V3-6A/6
(2)-jx3y2
【分析】本題主要考查了二次根式的混合運(yùn)算、二次根式的性質(zhì)等知識(shí)點(diǎn),根據(jù)二次根式的
性質(zhì)化簡(jiǎn)二次根式成為解題的關(guān)鍵.
(1)先根據(jù)二次根式的性質(zhì)化簡(jiǎn),然后再運(yùn)用二次根式的四則混合運(yùn)算法則計(jì)算即可;
(2)先根據(jù)二次根式的性質(zhì)化簡(jiǎn),然后再運(yùn)用二次根式的四則混合運(yùn)算法則計(jì)算即可.
【詳解】(1)解:
41
=-------X
2
上
2x(4V3-72-3748)
亞
2x℃-12碼
=712-676
=2A/3-6A/6.
答案第13頁(yè),共20頁(yè)
2歷]x1
=xyy[x+-
3y2
3y1
=xyy[xxX—X
2日J(rèn)2
1
=xyy/xX3yx—
2日J(rèn)2
--x3/.
4
42.(1)5
(2)10
【分析】本題考查二次根式混合運(yùn)算,最簡(jiǎn)二次根式,同類二次根式,掌握二次根式混合運(yùn)
算法則,最簡(jiǎn)二次根式,同類二次根式及合并法則是解題關(guān)鍵.
(1)先化簡(jiǎn)為最簡(jiǎn)二次根式,先計(jì)算括號(hào)里的,再計(jì)算二次根式乘法即可,
(2)先計(jì)算二次根式的乘法、化簡(jiǎn)絕對(duì)值和立方根,然后再算加減法即可.
二立+2x
【詳解】(1)解:
42
;4+2x3
=-1+6
=5;
(2)
=5+V5-(V5-2)-(-3)
=5+石-石+2+3
=10.
43.(1)2。;
(2)873;
⑶孚;
(4)672.
答案第14頁(yè),共20頁(yè)
【分析】(1)利用平方差公式進(jìn)行計(jì)算即可求解;
(2)先化簡(jiǎn),再合并同類二次根式即可;
(3)先化簡(jiǎn),再合并同類二次根式即可;
(4)先化簡(jiǎn),再根據(jù)二次根式的運(yùn)算法則計(jì)算即可求解;
本題考查了二次根式的混合運(yùn)算,掌握二次根式的性質(zhì)和運(yùn)算法則是解題的關(guān)鍵.
【詳解】(1)解:原式=3?—(J7『+2拒一(也『
=9-7+20-2
=2-\/2;
(2)解:原式=66一百+3百
=8百;
(3)解:原式=
3
=6+@,
3
_46.
一?
3
(4)解:原式=追金反—4g
2V2
=1072-4g,
=65/2.
44.(1)1
⑵-6
【分析】本題考查了實(shí)數(shù)的混合運(yùn)算,二次根式的混合運(yùn)算.
(1)先利用累的乘方及積的乘方逆用法則計(jì)算,零指數(shù)累,化簡(jiǎn)絕對(duì)值,再計(jì)算加減即可;
(2)先計(jì)算立方根,分母有理化,負(fù)整數(shù)塞,化簡(jiǎn)絕對(duì)值,再加減即可.
【詳解】(1)解:原式=(2—道廣,x(2+若廣\(2+g)—2xg-l
=12023X(2+V3)-V3-1
=2+V3-V3-l
答案第15頁(yè),共20頁(yè)
=1;
⑵解:原式=2+3+2)心一2)-9+3
=2+75-2-9+3-75
=-6.
45.<<
【分析】本題考查了二次根式的大小比較.
(1)利用平方法比較大小即可;
(2)利用分子有理化,即可比較大小.
【詳解】解:(1)(V15+V17)2=32+27255=32+71020,
31<V1020<32,
???63<32+V1020<64=82,V15+V17<8,故答案為:<;
_______________________________]
⑵V2014-V2015=
J2014+J2015-V2014+V2015
(J2015-j2016)(j2015+J2016)
1
72015-72016=
J2015+J2016V2015+V2016
[1
V2014+V2015J2015+J2016'
-------------1---------<--------------1---------
J2014+J2015V2015+V2016
???V2014-V2015<72015-72016,
故答案為:<.
46.>
【分析】本題考查了實(shí)數(shù)的大小比較和二次根式的性質(zhì)等知識(shí)點(diǎn).把根號(hào)外的因式平方后移
入根號(hào)內(nèi),比較結(jié)果的大小,即可求出答案.
【詳解】解:3網(wǎng)=J3。x6=,2>/13=V22x13=sj52<
?-?V54>V52>
3>/6>2V13,
故答案為:>.
答案第16頁(yè),共20頁(yè)
47.>
【分析】本題考查了比較實(shí)數(shù)的大小,以及二次根式的性質(zhì),先把根號(hào)外的因式移入根號(hào)內(nèi),
再根據(jù)實(shí)數(shù)的大小比較方法(絕對(duì)值大的反而小)比較大小即可.
【詳解】解:-273=-V12,-372=-V18,
|—>/f2|<卜,
.-.-V12>-V18,
-273>-3A/2,
故答案為:>.
48.=
【分析】本題考查分母有理化,二次根式的大小比較,掌握相應(yīng)的法則是解題的關(guān)鍵.
把S萬(wàn)分母有理化即可得到答案.
【詳解】解:~一忑
2+V3
-(2+V3)(2-V3)
2+V3
4-3
=2+,
故
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 河南省信陽(yáng)市(2024年-2025年小學(xué)五年級(jí)語(yǔ)文)統(tǒng)編版課后作業(yè)((上下)學(xué)期)試卷及答案
- 2024年《高等數(shù)學(xué)2》教案設(shè)計(jì):案例分析與啟示
- 2024年20加減法課件:提升教學(xué)效果的策略
- 2024年人力資源管理創(chuàng)新思維教案
- 2024年《條據(jù)》公開(kāi)課教案:提升學(xué)生學(xué)習(xí)能力
- 2024年市場(chǎng)營(yíng)銷學(xué)課件:創(chuàng)新與趨勢(shì)
- 河南省南陽(yáng)市2024-2025學(xué)年高三上學(xué)期11月期中考試 語(yǔ)文 含答案
- 2024年教案:深度解析20以內(nèi)加減法的教學(xué)方法與技巧
- 2024保護(hù)環(huán)境人人有責(zé)主題演講稿(31篇)
- 2024年《剪窗花》教學(xué)課件
- 校企共建項(xiàng)目合同違約條款
- GB/T 16716.5-2024包裝與環(huán)境第5部分:能量回收
- 中小學(xué)教師如何做課題研究設(shè)計(jì)課件
- 《1.6.1 余弦定理》說(shuō)課稿
- 急診醫(yī)學(xué)測(cè)試試題及答案
- 2024年廣州鐵路(集團(tuán))公司招聘468人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2024年消防月全員消防安全知識(shí)專題培訓(xùn)-附20起典型火災(zāi)案例
- 恒牙臨床解剖-上頜中切牙(牙體解剖學(xué)課件)
- 戲劇鑒賞學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- NBT 31021-2012風(fēng)力發(fā)電企業(yè)科技文件規(guī)檔規(guī)范
- 2024年國(guó)家公務(wù)員考試行測(cè)真題及解析(完整版)
評(píng)論
0/150
提交評(píng)論