人教版九年級數(shù)學上冊重難點專項訓練:圖形的相似(原卷版+解析)_第1頁
人教版九年級數(shù)學上冊重難點專項訓練:圖形的相似(原卷版+解析)_第2頁
人教版九年級數(shù)學上冊重難點專項訓練:圖形的相似(原卷版+解析)_第3頁
人教版九年級數(shù)學上冊重難點專項訓練:圖形的相似(原卷版+解析)_第4頁
人教版九年級數(shù)學上冊重難點專項訓練:圖形的相似(原卷版+解析)_第5頁
已閱讀5頁,還剩34頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

專題05圖形的相似

聚焦考點

考點一比例的性質(zhì)考點二線段的比

考點三成比例線段考點四黃金分割

考點五由平行判斷成比例的線段考點六由平行截線求相關(guān)線段的長或比值

考點七相似圖形與相似多邊形考點八相似多邊形的性質(zhì)

考點一比例的性質(zhì)

例題:(2021?江蘇?南通市八一中學九年級階段練習)已知;=,,則里的值為()

b5b-a

54

A.2B.—C.4D.一

25

【變式訓練】

1.(2022?四川?渠縣崇德實驗學校九年級期末)已知5x=6y(y*0),則下面結(jié)論成立的是()

x5xyx6x6

A.-=—B.—=—C.-=-D.—=—

y656>55y

2.(2021?河南?鶴壁市淇濱中學九年級階段練習)已知2=],那么歲=_____.

a3b

考點二線段的比

例題:(2022?全國?九年級專題練習)地圖上樂山到峨眉的圖上距離為3.8厘米,比例尺是1:1000000,那

么樂山到峨眉的實際距離是()

A.3800米B.38000米C.380000米D.3800000米

【變式訓練】

1.(2022?河南南陽?九年級期中)在比例尺為1:5000000的地圖上,若測得甲、乙兩地間的圖上距離為5

厘米,則甲、乙兩地間的實際距離為千米.

Ar)

2.(2022?云南文山?九年級期末)如圖,在AABC中,。、E分別是48、AC的中點,貝1」二工=.

A

考點三成比例線段

例題:(2022?全國?九年級專題練習)已知服b、c、d是成比例線段,其中〃=3,b=0.6,c=2,則線段d

的長為()

A.0.4B.0.6C.0.8D.4

【變式訓練】

1.(2020?遼寧?寬甸滿族自治縣第一初中九年級階段練習)下列四組線段中,是成比例線段的是(

A.5cm,6cm,Jem,8cmB.3cm,6cm,2cm,5cm

C.2cm,4cm,6cm98cmD.2cm,3cm,4cm,6cm

2.(2022.陜西渭南?九年級期末)若長度為6cm,3cm,8cm,acm的四條線段是成比例線段,則。的值為

)

A.2B.4C.16D.3

考點四黃金分割

例題:(2021,廣西?梧州市第十中學九年級期中)已知C是線段AB的黃金分割點,且AC>BC,則下列結(jié)論

錯誤的是()

A.A^BCABB.B^ACABC.生=必匚D.&.=@±1

AC2AC2

【變式訓練】

1.(2022?黑龍江大慶?八年級期末)大自然是美的設計師,即使是一片小小的樹葉,也蘊含著"黃金分割",

如圖,尸為的黃金分割點(AP>PB),如果A3的長度為10cm,那么AP的長度為cm.(結(jié)果

保留根號)

2.(2022?山東淄博?八年級期末)我們把寬與長的比是息口的矩形叫做黃金矩形,己知四邊形ABCD是黃

2

金矩形,邊A3的長度為宕-1,則該矩形的周長為

考點五由平行判斷成比例的線段

例題:(2021?廣西?梧州市第十中學九年級期中)如圖,在AABC中,點西,E,F分別在AB,AC,BC邊上,

DE3BC,EF^AB,則下列結(jié)論正確的是()

ADAEADBFADFCADFC

1.-----------

DBAC~DB~~FCDB-BF

【變式訓練】

1.(2021,安徽?合肥市五十中學新校九年級期中)如圖4〃/2〃,3,直線AC與。尸交于點o,且與4,4,4

分別交于點A,B,C,D,E,F,則下列比例式不正確的是()

AB_DEnABDEOBOEADAO

B.-

~BC~~EFBOEO~OC~~OF~CF~~\C

2.(2022?山東煙臺?八年級期末)如圖,已知AB〃CD〃EF,那么下列結(jié)論正確的是()

DFBCADBEADBC

CBDF~AD~~CEDF-CE

考點六由平行截線求相關(guān)線段的長或比值

例題:(2022?黑龍江?大慶市慶新中學八年級期中)如圖,點O,£分別在A5,AC上,DE//BC,

AD:DB=3:5,若AE=6,則AC的長為

D,

【變式訓練】

1.(2022?山東濟南?八年級期中)如圖,已知在AABC中,點。、E、尸分別是邊AB、AC.3C上的點,

DE//BC,EF//AB,且4。:。3=3:5,那么C匕F等于___________.

CB

2.(2022?山東煙臺?八年級期中)圖,/J即4,直線。、。與4、1八4分別相交于點A、B、C和點。、E、

F.若AB=5,DE=2,AC=15,貝l|EF=

考點七相似圖形與相似多邊形

例題:(2021?重慶市巴川小班實驗中學校九年級階段練習)觀察下列每組圖形,是相似圖形的是()

A.

【變式訓練】

1.(2022?江蘇?宜興市桃溪中學九年級階段練習)下列圖形中,不一定是相似圖形的是()

A.兩個等邊三角形B.兩個等腰直角三角形

C.兩個長方形D.兩個圓

2.(2022?山東煙臺?八年級期中)下列四組平面圖形中,一定相似的是()

A.等腰三角形與等腰三角形B.正方形與菱形

C.正五邊形與正五邊形D.菱形與菱形

考點八相似多邊形的性質(zhì)

例題:(2022?全國?九年級專題練習)已知,如圖兩個四邊形相似,貝靦a的度數(shù)是(

A.87°B.60°C.75°D.120°

【變式訓練】

1.(2022?全國?九年級專題練習)己知四邊形A8CDE1四邊形且AB=3,EF=4,FG=5.則四邊形

EFGW與四邊形ABC。的相似比為()

A.3:4B.3:5C.4:3D.5:3

2.(2022?遼寧?沈陽市第一三四中學九年級階段練習)如圖,將一張矩形紙片沿它的長邊對折為折痕),

得到兩個全等的小矩形.如果小矩形長邊與短邊的比等于原來矩形長邊與短邊的比,那么原來矩形的長邊

與短邊的比值是.

3.(2022?遼寧?沈陽市第一二六中學九年級階段練習)一塊矩形綢布的長米,寬AZ)=1米,按照圖

中所示的方式將它裁成完全相同的三面矩形彩旗,且使裁出的每面彩旗的寬與長的比與原綢布的寬與長的

比相同,那么。的值為

DC

AR

j課后訓練:

??

1.(2022?廣東?茂名市新世紀學校九年級期中)下列四條線段不成比例的是()

8

A,〃=3,b=6,c=2,(7=4B.a--,b=8,c=5,d=15

3

C.a=6,b=2,c=3,d=y[2D.a=l,b=近,。=g,d=y/6

2.(2022?四川成都?九年級期末)一張比例尺為1:1000的圖紙上,一塊多邊形地區(qū)的面積是260平方厘米,

則該地區(qū)的實際面積是()平方米.

A.260000B.260000000C.26000D.2600000

3.(2022?廣西?北海市外國語實驗學校九年級階段練習)如圖,已知若鉆=1,BC=2,DE=1.5,

則D廠的長為()

A.1.5B.2C.4.5D.3

4.(2021?廣東?揭西縣寶塔實驗學校九年級期中)下列說法不正確的是()

A.若線段。=5on,b=2cm,則成/?=5回2

B.若線段42=君。",C是線段的黃金分割點,5.AOBC,貝|AC=匕5c機

2

C.將一個矩形風景畫的四周上寬度相等的金邊后得到的新矩形與原矩形相似

D.若兩個相似多邊形的面積比為16回9,那么這兩個相似多邊形的周長比是4團3

二、填空題

5.(2021?廣東?佛山市南海外國語學校九年級階段練習)已知:/=則一<=;

b3a+b

6.(2022?江蘇?靖江市實驗學校九年級階段練習)已知A、B兩地實際距離是250米,圖上距離是5厘米,

則這幅地圖的比例尺為

7.(2022?福建三明?九年級期末)兩個相似多邊形的周長比是2回3,其中較小多邊形的面積為12cm2,則較

大多邊形的面積為而

8.(2022?山東師范大學第二附屬中學九年級階段練習)如圖,學校元旦晚會的舞臺A3的長為20米,主持

人小明學習了相關(guān)的數(shù)學知識后,認為站在點C處更自然得體(已知點C是線段A3上靠近點8的黃金分

割點),則此時小明與點A的距離為米.

III

ACB

三、解答題

9.(2021?甘肅?會寧縣枝陽初級中學九年級期中)已知,如圖A8=3,BC=5,DF=16,求DE

和的長.

10-12。22.江蘇.江陰市青陽初級中學九年級階段練習)⑴已知f蘭小2尤+尸。,求「的值.

求x的值.

11.(2021?全國?九年級專題練習)如圖所示,矩形ABC。是黃金矩形(即四=吏二1=0.618),如果在其內(nèi)

BC2

作正方形CDER得到一個小矩形ABM,試問矩形A3席是否也是黃金矩形?

DEA

12.(2022?安徽?合肥市五十中學東校九年級階段練習)如圖,AC//EF//BD.

⑴求證:—+—

ACBDEF

(2)若AC=3,EF=2,求3。的值.

13.(2022?上海?新區(qū)川沙新鎮(zhèn)江鎮(zhèn)中學九年級階段練習)如圖,已知點A、C、E和點8、F、。分別是回。

兩邊上的點,且〃即,BC//EF,AF、BC交于點CD、所交于點N.

⑴求證:AF//CD;

⑵若。4:AC:CE=3:2:4,AM=l,求線段ON的長.

14.(2022?全國?九年級課時練習)已知四邊形ABC。與四邊形其qGR相似,并且點A與點A、點B與點、用、

點c與點G、點。與點2對應.

⑴已知04=40。,團8=110°,13cl=90°,求回。的度數(shù);

(2)已知AB=9,CD—Y5,4月=6,4,=4,BiCi=8,求四邊形A3C£)的周長.

15.(2022,安徽安慶?九年級期末)如圖,在0ABe中,DF^AC,DES\BC.

BFCE

(1)求證:

FCEA

(2)若AE=4,EC=2,BC=10,求8尸和CE長.

16.(2022?遼寧大連?九年級期末)如圖,在R/GL48c中,0ACB=90",A。平分EIR4C交8C于點。,點E在

AC邊上,0ADE=45°.過E作匹的垂線交3c延長線于點F,交于點G,交43于點H.

⑴求證團0E=EL4E";

(2)求證EF=G”;

DF

⑶若EG=kGH,求不;的值(用含人的式子表示).

17.(2022?上海市進才中學八年級期中)如圖1,梯形48。中,ZA=90°,AD//BC,AD=2,AB=3,

CO=3指,點尸是A。延長線上一點,產(chǎn)為。C的中點,連接3P,交線段。尸于點G.

圖1

(1)當AB+DP=P3時,求。尸的長.

圖2

①若設£>P=x,EF=y,求y與x的函數(shù)關(guān)系式并寫出自變量x的取值范圍.

②連接。E和PE,若DE=PF,求。尸長.

BC

備用圖

專題05圖形的相似

考點一比例的性質(zhì)考點二線段的比

考點三成比例線段考點四黃金分割

考點五由平行判斷成比例的線段考點六由平行截線求相關(guān)線段

的長或比值

考點七相似圖形與相似多邊形考點八相似多邊形的性質(zhì)

考點一比例的性質(zhì)

例題:(2021?江蘇?南通市八一中學九年級階段練習)已知<=,,則乎的值為()

b5b-a

54

A.2B.—C.4D.一

25

【答案】c

【分析】利用設發(fā)法,進行計算即可解答.

【詳解】解:0-=-,

b5

團設a=3k,b=5kf

a+b3k+5k8k

0------二—=4A,

b-a5k-3k2k

故選:C.

【點睛】本題考查了比例的性質(zhì),熟練掌握設左法進行計算是解題的關(guān)鍵.

【變式訓練】

1.(2022?四川?渠縣崇德實驗學校九年級期末)已知5x=6y(yw0),則下面結(jié)論成立的是

()

X6

D.

5y

【答案】C

【分析】根據(jù)比例的性質(zhì)求解即可.

【詳解】解:El5x=6y(y片0),

故選c.

【點睛】本題考查了比例的性質(zhì),熟練掌握比例的性質(zhì)是解題的關(guān)鍵.

bo〃_卜

2.(2021?河南?鶴壁市淇濱中學九年級階段練習)已知一=;,那么.=______

a3b

【答案】|

【分析】由題意可設。=3x,6=2x,然后代入求解即可.

【詳解】解:?.b/=[2,

a3

設a=3x,Z?=2x

a-b3x-2x

----=------=-1,

b2x2

故答案為:

【點睛】本題主要考查比例的性質(zhì),熟練掌握比例的性質(zhì)是解題的關(guān)鍵.

考點二線段的比

例題:(2022?全國?九年級專題練習)地圖上樂山到峨眉的圖上距離為3.8厘米,比例尺是1:

1000000,那么樂山到峨眉的實際距離是()

A.3800米B.38000米C.380000米D.3800000米

【答案】B

【分析】設樂山到峨眉的實際距離為xcm,利用比例尺的定義得到3.8:x=l:1000000,然

后利用比例的性質(zhì)求出x,再化單位化為米即可.

【詳解】解:設樂山到峨眉的實際距離為x厘米,

根據(jù)題意得3.8:x=l:1000000,

解得x=3800000,

所以樂山到峨眉的實際距離是3800000厘米,即38000米.

故選:B.

【點睛】本題考查了比例線段,正確理解比例尺的定義是解決問題的關(guān)鍵.

【變式訓練】

1.(2022,河南南陽?九年級期中)在比例尺為1:5000000的地圖上,若測得甲、乙兩地間的

圖上距離為5厘米,則甲、乙兩地間的實際距離為千米.

【答案】250

【分析】要求兩地的實際距離是多少千米,根據(jù)"圖上距離+比例尺=實際距離",代入數(shù)值計

算即可.

5=25000000

【詳解】解:-5oooooo(厘米)

25000000厘米=250千米

答:兩地間的實際距離是250h,z.

故答案為:250.

【點睛】此類型的題目都可根據(jù)圖上距離、比例尺和實際距離三者的關(guān)系,進行分析解答即

可得出結(jié)論.

An

2.(2022?云南文山?九年級期末)如圖,在AABC中,D、E分別是A3、AC的中點,則

【分析】根據(jù)點D是中點直接得出署的值即可

AB

【詳解】解:團點。是A8中點,

[?L4B=2AD,

AD1

團=—

AB2

故答案為:g

【點睛】本題考查了線段的中點及線段的比,解決本題的關(guān)鍵是熟練掌握線段中點的定義.

考點三成比例線段

例題:(2022?全國?九年級專題練習)已知a、b、c、d是成比例線段,其中。=3,b—Q.6,c

=2,則線段d的長為()

A.0.4B.0.6C.0.8D.4

【答案】A

【分析】如果四條線段b、c、d滿足;=三、則四條線段內(nèi)b、c、d稱為比例線段.(有

ba

先后順序,不可顛倒),將。,6及c的值代入即可求得d.

【詳解】已知。,b,c,1是成比例線段,

根據(jù)比例線段的定義得:7=4-

ba

,32

代入4=3,0=0.6,c=2,得:——二—,

0.6d

解得:d=0.4.

故線段d的長為0.4.

故選A.

【點睛】本題考查線段成比例的問題.根據(jù)線段成比例的定義求解即可.

【變式訓練】

1.(2020?遼寧?寬甸滿族自治縣第一初中九年級階段練習)下列四組線段中,是成比例線段

的是()

A.5cm,6cmf7cmf8cmB.3cm,6cmf2cmf5cm

C.2cm,4cmf6cmf8cmD.2cmf3cm,4cmf6cm

【答案】D

【分析】如果其中兩條線段的乘積等于另外兩條線段的乘積,則四條線段叫成比例線段.對

選項一一分析,排除錯誤答案.

【詳解5x8w6x7,故選項錯誤;

B.3x5w6x2,故選項錯誤;

C.2x8w4x6,故選項錯誤;

D.2x6=3x4,故選項正確,

故選:D.

【點睛】此題考查了比例線段,根據(jù)成比例線段的概念,注意在相乘的時候,最小的和最大

的相乘,另外兩個相乘,看它們的積是否相等.同時注意單位要統(tǒng)一.

2.(2022?陜西渭南?九年級期末)若長度為6cm,3cm,8cm,acm的四條線段是成比例線

段,貝匹的值為()

A.2B.4C.16D.3

【答案】B

【分析】根據(jù)四條線段成比例的概念,得比例式6:3=8:。,再根據(jù)比例的基本性質(zhì),即可

求得。的值.

【詳解】解:團長度為6cm,3cm,8cm,acm的四條線段是成比例線段,

136:3=8:。,

l3a=3x8+6=4.

故選:B.

【點睛】本題考查成比例線段的概念,比例的基本性質(zhì).掌握成比例線段的概念是解題的關(guān)

鍵.

考點四黃金分割

例題:(2021?廣西?梧州市第十中學九年級期中汨知C是線段AB的黃金分割點,且AOBC,

則下列結(jié)論錯誤的是()

A.A^BCABB.B^ACABC.—=D.四

AC2AC2

【答案】B

【分析】根據(jù)黃金分割的定義得出生=任=叵],從而判斷各選項.

ACAB2

【詳解】解:回點C是線段AB的黃金分割點且AOBC,

0—=—=即故4、C選項正確,不符合題意;

ACAB2

AB_1_^+1

0AC-75-1-2,故選項。正確,不符合題意;

2

由與;=£得不至IJ8C2=AC?AB,所以,選項2錯誤,符合題意,

ACAB

故選:B.

【點睛】本題主要考查黃金分割:把一條線段分成兩部分,使其中較長的線段為全線段與較

短線段的比例中項,這樣的線段分割叫做黃金分割,他們的比值(叵口)叫做黃金比.,

2

掌握黃金分割的定義和性質(zhì)是解題的關(guān)鍵.

【變式訓練】

1.(2022?黑龍江大慶?八年級期末)大自然是美的設計師,即使是一片小小的樹葉,也蘊含

著"黃金分割",如圖,尸為A3的黃金分割點(AP>PB),如果AB的長度為10cm,那么AP

的長度為cm.(結(jié)果保留根號)

【答案】5^5-5

【分析】先利用黃金分割的定義計算出AP,然后計算AB/尸即得到網(wǎng)的長.

【詳解】解:"為的黃金分割點(AP>PB),

0AP=2/E1AB=^1x10=575-5(cm),

22

故答案為:5逐-5.

【點睛】本題考查了黃金分割:把線段分成兩條線段AC和2C(AC>BC),且使AC是

A8和BC的比例中項(即48:AC=AC:8C),叫做把線段A8黃金分割,點C叫做線段AB的

黃金分割點,熟記黃金分割比值是解題的關(guān)鍵.

2.(2022?山東淄博?八年級期末)我們把寬與長的比是好匚的矩形叫做黃金矩形,己知四

2

邊形A3CD是黃金矩形,邊AB的長度為6-1,則該矩形的周長為—

【答案】4或2+26

【分析】根據(jù)黃金矩形的定義進行討論,當3C=叵口時,當AB=叵UBC時,分別

2

計算即可.

【詳解】解:當BC=與工時,即如-1)=3-石,

此時矩形的周長為2(3-占+占-1)=4;

當時,即^=

22

解得BC=2,

此時矩形的周長為2(2+君-1)=2+2石,

綜上所述,該矩形的周長為4或2+2石.

故答案為:4或2+20.

【點睛】本題考查了黃金分割,解題的關(guān)鍵是掌握要注意分類討論.

考點五由平行判斷成比例的線段

例題:(2021?廣西?梧州市第十中學九年級期中)如圖,在AABC中,點。E,尸分別在AB,

AC,BC邊上,DE3BC,EI^AB,則下列結(jié)論正確的是()

ADAEADBFADFCADFC

[-----=------R-----=------C-----=------D

DBAC?DBFCDBBF*~DB~~BC

【答案】B

Ar)

【分析】根據(jù)平行線分線段成比例定理,在兩組平行線里面,通過黑AEAEBF

~EC'二一五

逐項判斷,得出結(jié)論.

【詳解】0DE”BC,

ADAE

0--=--.

DBEC

BEF//AB,

AEBF

團----.....9

ECFC

ADAEBF

團---=----=----,

DBECFC

ADBF

團---=---.

DBFC

故選:B.

【點睛】本題主要考查了平行線分線段成比例定理及其應用問題,解題的關(guān)鍵是找準對應線

段,準確列出比例式,推理論證.

【變式訓練】

1.(2021?安徽?合肥市五十中學新校九年級期中)如圖4〃[〃4,直線AC與。尸交于點O,

且與乙,L4分別交于點A,B,C,D,E,F,則下列比例式不正確的是()

A這一匹B這一匹c絲-三D絲-型

BCEF'BOEOOCOF'CFAC

【答案】D

【分析】平行線分線段成比例定理的內(nèi)容是:一組平行線截兩條直線,所截的線段對應成比

例,根據(jù)以上內(nèi)容判斷即可.

【詳解】解:A、^//12//13,

ABDE人—

0—,結(jié)果正確,故本選項不符合題意;

BCEF

B、回4//12//13,

ABDE

0--=--,結(jié)果正確,故本選項不符合題意;

BOEO

C、回4//12//13,

OBOE中十丁區(qū)

回發(fā)=而‘結(jié)果正確'故本選項不符合題意;

。、M//12//13,

ADAO

團---=---,結(jié)果錯誤,故本選項符合題意;

CFOC

故選:D.

【點睛】本題考查了平行線分線段成比例定理,解題的關(guān)鍵是:一組平行線截兩條直線,所

截的線段對應成比例.

2.(2022?山東煙臺?八年級期末)如圖,已知46〃8〃£7"那么下列結(jié)論正確的是()

DFBCADBEAD_BC

CBDF~AD~~CEAF-BCDF~CE

【答案】D

【分析】根據(jù)〃兩條直線被一組平行線所截,所得的對應線段成比例〃進行判斷即可.

【詳解】解:兩條直線被一組平行線所截,所得的對應線段成比例,

團3C和AO對應,CE和。尸對應,BE和A尸對應,

CEDFADBC

回---1—____________________—.................

CB~AD'AF~BE'

故。正確.

故選:D.

【點睛】本題主要考查兩條直線被一組平行線所截,所得的對應線段成比例,確定出對應線

段是解題的關(guān)鍵.

考點六由平行截線求相關(guān)線段的長或比值

例題:(2022?黑龍江?大慶市慶新中學八年級期中)如圖,點。,E分別在AB,AC上,

DE//BC,AD:DB=3:5,若AE=6,則AC的長為

【答案】16

【分析】根據(jù)平行線分線段成比例,可得AEZCuADgBuBS從而得到EC=10,即

可求解.

【詳解】解:^DE//BC,AD:DB=3:5,

團AEEC=AD:DB=3:5,

團AE=6,

06:EC=3:5,

解得:EC=10,

AC=AE+EC=6+10=16.

故答案為:16

【點睛】本題主要考查了平行線分線段成比例,熟練掌握平行線分線段成比例是解題的關(guān)鍵.

【變式訓練】

1.(2022?山東濟南?八年級期中)如圖,已知在AA5C中,點。、E、尸分別是邊Afi、AC.BC

上的點,DE//BC,EF//AB,且"):。3=3:5,那么C匚F等于___________.

CB

【答案】j##5:8

o

【分析】根據(jù)平行線分線段成比例定理,由得到AE:EC=AD-DB=3:5,則利用

比例性質(zhì)得到CE:CA=5:8,然后利用所〃AB可得到CP:CB=5;8.

【詳解】解:^iDE//BC,

^\AE:EC=AD:DB=3:5,

[2CE:CA=5:8,

^\EF//AB,

0CF:CB=CE:CA=5:8.

故答案為:"I

o

【點睛】本題考查了平行線分線段成比例:平行于三角形一邊的直線截其他兩邊(或兩邊的

延長線),所得的對應線段成比例.

2.(2022?山東煙臺?八年級期中)圖,4//V4,直線。、6與4、卜、4分別相交于點A、B、

C和點。、E、F.若AB=5,DE=2,AC=15,貝?。〦F=.

【答案】4

【分析】由題意易得8C=10,然后根據(jù)平行線所截線段成比例可進行求解.

【詳解】解:0AB=5,AC=15,

0BC=1O,

回/J/p/3,

ABDE1

團==—

BCEF2

團。石=2,

團EF=4;

故答案為4.

【點睛】本題主要考查平行線所截線段成比例,熟練掌握平行線所截線段成比例是解題的關(guān)

鍵.

考點七相似圖形與相似多邊形

例題:(2021?重慶市巴川小班實驗中學校九年級階段練習)觀察下列每組圖形,是相似圖形

的是()

【答案】A

【分析】根據(jù)相似圖形的定義進行判斷即可.

【詳解】4兩圖形形狀相同,是相似圖形,故A正確;

B.兩圖形形狀不同,不是相似圖形,故8錯誤;

C.兩圖形形狀不同,不是相似圖形,故C錯誤;

D.兩圖形形狀不同,不是相似圖形,故。錯誤.

故選:A.

【點睛】本題主要考查了相似圖形的定義,熟練掌握形狀相同的兩個圖形為相似圖形,是解

題的關(guān)鍵.

【變式訓練】

1.(2022?江蘇?宜興市桃溪中學九年級階段練習)下列圖形中,不一定是相似圖形的是()

A.兩個等邊三角形B.兩個等腰直角三角形

C.兩個長方形D.兩個圓

【答案】C

【分析】根據(jù)對應角相等,對應邊成比例的兩個圖形,叫做相似圖形,對選項一一進行判斷

即可.

【詳解】解:A、回等邊三角形的三個內(nèi)角都是60。,

團任意兩個等邊三角形一定存在兩對內(nèi)角分別對應相等,再由相似三角形判定定理得兩個等

邊三角形一定相似,故該選項不符合題意;

B、團等腰直角三角形的三個內(nèi)角分別為45。、45。、90°,

團任意兩個等腰直角三角形一定存在兩對內(nèi)角分別對應相等,再由相似三角形判定定理得兩

個等腰直角三角形一定相似,故該選項不符合題意;

C、團任意兩個長方形的長和寬對應比例不確定,長之比和寬之比不一定相等,

團任意兩個長方形不一定相似,故該選項符合題意;

。、回任意兩個圓中,其中一個圓放大或縮小后能夠與另一個圓重合,

團任意兩個圓一定相似,故該選項不符合題意.

故選:C

【點睛】本題考查了相似圖形的判定,涉及等腰三角形、等腰直角三角形、長方形、圓等知

識點,解本題的關(guān)鍵在熟練掌握相關(guān)圖形的性質(zhì).

2.(2022?山東煙臺?八年級期中)下列四組平面圖形中,一定相似的是()

A.等腰三角形與等腰三角形B.正方形與菱形

C.正五邊形與正五邊形D.菱形與菱形

【答案】C

【分析】根據(jù)多邊形相似的定義判斷即可.

【詳解】因為等腰三角形與等腰三角形不一定相似,

所以A錯誤,不符合題意;

因為正方形與菱形不一定相似,

所以2錯誤,不符合題意;

正五邊形與正五邊形一定相似,

所以C正確,符合題意;

菱形與菱形不一定相似,

所以。錯誤,不符合題意;

故選:C.

【點睛】本題考查了多邊形的相似即對應邊成比例且對應角相等,熟練掌握定義是解題的關(guān)

鍵.

考點八相似多邊形的性質(zhì)

例題:(2022?全國?九年級專題練習)已知,如圖兩個四邊形相似,則即的度數(shù)是()

a\

138°

60°

75°60°

A.87°B.60°C.75°D.120°

【答案】A

【解析】略

【變式訓練】

1.(2022?全國?九年級專題練習)已知四邊形四邊形EFG”,且AB=3,EF=4,FG

=5.則四邊形EFGH與四邊形ABC。的相似比為()

A.3:4B.3:5C.4:3Z).5:3

【答案】C

【解析】略

2.(2022?遼寧?沈陽市第一三四中學九年級階段練習)如圖,將一張矩形紙片沿它的長邊對

折(EP為折痕),得到兩個全等的小矩形.如果小矩形長邊與短邊的比等于原來矩形長邊與

短邊的比,那么原來矩形的長邊與短邊的比值是.

【答案】V2

140ARAR2

【分析】先根據(jù)題意得到AE=;AB,F(xiàn)=F,再代入變形得到々=2,然后求解.

2AEADAD2

14nA/?

【詳解】根據(jù)題意,得==

2AEAD

將=代入當=黑,得竺_=2,開平方得當=0(*=一行舍去).

2AEADAD2ADAD

故答案為:72.

【點睛】本題考查相似多邊形對應邊成比例的性質(zhì),熟練掌握相似多邊形對應邊成比例是解

題的關(guān)鍵.

3.(2022?遼寧?沈陽市第一二六中學九年級階段練習)一塊矩形綢布的長A2=a米,寬

=1米,按照圖中所示的方式將它裁成完全相同的三面矩形彩旗,且使裁出的每面彩旗的寬

與長的比與原綢布的寬與長的比相同,那么。的值為.

【答案】73

【分析】由裁出的每面彩旗的寬與長的比與原綢布的寬與長的比相同,構(gòu)建方程求解即可.

【詳解】解:團使裁出的每面彩旗的寬與長的比與原綢布的寬與長的比相同,長AB=a米,

寬A£>=1米,

1

r-i1一。

回1「3,

a1

解得〃=6或〃=-百(舍去),

回a=V3.

故答案為:6.

【點睛】本題考查了相似多邊形的性質(zhì).注意相似多邊形的對應邊成比例.

i課后訓練:

?.?

1.(2022?廣東?茂名市新世紀學校九年級期中)下列四條線段不成比例的是()

8

A.a=3,b=6,c=2,d=4B.a=-,6=8,c=5,<7=15

3

C.a=6,6=2,c=3,d=s/2D.a=\,b=&,c=石,d=?

【答案】C

【分析】根據(jù)比例線段的概念,讓最小的和最大的相乘,另外兩條相乘,看它們的積是否相

等即可得出答案.

【詳解】解:A.2x6=3x4,能成比例,本選項不符合題意;

Q

B.-x15=8x5=40,能成比例,本選項不符合題意;

C.任兩組數(shù)的積均不相等,故這四條線段不成比例,本選項符合題意;

D.1義瓜=6.x乖,=瓜,能成比例,本選項不符合題意;

故選:C.

【點睛】本題考查了比例線段,理解成比例線段的概念,注意在線段兩兩相乘的時候,要讓

最小的和最大的相乘,另外兩條相乘,看它們的積是否相等進行判斷.

2.(2022?四川成都,九年級期末)一張比例尺為1:1000的圖紙上,一塊多邊形地區(qū)的面積

是260平方厘米,則該地區(qū)的實際面積是()平方米.

A.260000B.260000000C.26000D.2600000

【答案】c

【分析】相似多邊形的面積的比等于相似比的平方,據(jù)此求解,注意單位.

【詳解】解:設該地區(qū)的實際面積是比蘇,由題意得

260:x=(1:1000)2,

解得x=260000000,

260000000cm2=26000/w2,

故選:C.

【點睛】此題考查相似多邊形的性質(zhì):相似多邊形對應邊之比、周長之比等于相似比,而面

積之比等于相似比的平方.

3.(2022?廣西?北海市外國語實驗學校九年級階段練習)如圖,已知4〃/2〃4,若

C.4.5D.3

【答案】C

【分析】根據(jù)平行線分線段成比例定理可知,三條平行線截兩條直線,所得的對應線段成比

例,列出比例式解答即可.

【詳解】解:團4〃4〃4,

ABDE

0--=--

BCEF

0—1=-1.-5

2EF

解得£F=3,

0DF=DE+EF=1.5+3=4.5.

故選:C.

【點睛】本題考查了平行線分線段成比例定理,熟記定理并靈活運用是解題的關(guān)鍵.三條平

行線截兩條直線,所得的對應線段成比例.

4.(2021?廣東?揭西縣寶塔實驗學校九年級期中)下列說法不正確的是()

A.若線段。=5。根,b=2cm,貝。鼬=5回2

B.若線段C是線段AB的黃金分割點,且AO8C,則

2

C.將一個矩形風景畫的四周上寬度相等的金邊后得到的新矩形與原矩形相似

D.若兩個相似多邊形的面積比為16回9,那么這兩個相似多邊形的周長比是4回3

【答案】C

【分析】根據(jù)線段的比對A進行判斷;根據(jù)黃金分割的定義對8進行判斷;將一個矩形風

景畫的四周鑲上寬度相等的金邊后得到的新矩形,原矩形的長寬之比與新矩形的長寬之比不

一定相等,則可對C進行判斷;根據(jù)相似多邊形的性質(zhì)對。進行判斷.

【詳解】解:A.若線段b=2aw,則a:b—5:2,則A選項的說法正確,所以A選

項不符合題意;

B.若線段AB=^cm,C是線段AB的黃金分割點,5.AOBC,則則8

2

選項的說法正確,所以8選項不符合題意;

C.將一個矩形風景畫的四周鑲上寬度相等的金邊后得到的新矩形與原矩形不一定相似,則

C選項的說法錯誤,所以C選項符合題意;

D.若兩個相似多邊形的面積比為16:9,那么這兩個相似多邊形的周長比是4:3,則。選

項的說法正確,所以。選項不符合題意.

故選:C.

【點睛】本題考查了相似多邊形的性質(zhì):相似多邊形的對應角相等;對應邊的比相等,面積

的比等于相似比的平方.也考查了矩形的性質(zhì)和黃金分割..

二、填空題

5.(2021?廣東?佛山市南海外國語學校九年級階段練習)已知::=],則一J=________;

b3a+b

3

【答案】-##0.6

【分析】根據(jù)題意設。=2太8=3左,根據(jù)比例的性質(zhì)即可求解.

【詳解】解:畔=巳

b3

設a=2k,b=3k,

回上=^^=燙=3,

a+b2k+3k5k5

3

故答案為:弓.

【點睛】本題考查了比例的性質(zhì),掌握比例的性質(zhì)是解題的關(guān)鍵.

6.(2022?江蘇?靖江市實驗學校九年級階段練習)已知A、8兩地實際距離是250米,圖上

距離是5厘米,則這幅地圖的比例尺為

【答案】1:5000

【分析】根據(jù)比例尺=圖上距離:實際距離,求解即可.

【詳解】250米=25000厘米;

5:25000=1:5000,

故答案為:1:5000.

【點睛】本題考查了比例尺的知識,解題的關(guān)鍵是了解比例尺的求法,難度不大.

7.(2022,福建三明?九年級期末)兩個相似多邊形的周長比是2回3,其中較小多邊形的面積

為12cs2,則較大多邊形的面積為cm2

【答案】27

【分析】根據(jù)相似多邊形的性質(zhì):相似多邊形周長的比等于相似比;相似多邊形面積的比等

于相似比,即可求出較大多邊形的面積.

小多邊形周長2

【詳解】0

大多邊形周長3

7

團相似比為:I

日小多邊形面積一(2丫

,大多邊形面積一

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論