2022-2023學(xué)年八年級(jí)數(shù)學(xué)上學(xué)期復(fù)習(xí):選擇30題 (提升版)_第1頁
2022-2023學(xué)年八年級(jí)數(shù)學(xué)上學(xué)期復(fù)習(xí):選擇30題 (提升版)_第2頁
2022-2023學(xué)年八年級(jí)數(shù)學(xué)上學(xué)期復(fù)習(xí):選擇30題 (提升版)_第3頁
2022-2023學(xué)年八年級(jí)數(shù)學(xué)上學(xué)期復(fù)習(xí):選擇30題 (提升版)_第4頁
2022-2023學(xué)年八年級(jí)數(shù)學(xué)上學(xué)期復(fù)習(xí):選擇30題 (提升版)_第5頁
已閱讀5頁,還剩24頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年八年級(jí)數(shù)學(xué)上學(xué)期復(fù)習(xí)備考高分秘籍【蘇科版】

專題6.1小題易丟分期末考前必做選擇30題(提升版)

一.選擇題(共30小題)

1.(2022秋?鹽都區(qū)期中)下列說法正確的是()

A.9的平方根3

B.V16=±4

C.-9沒有立方根

D.平方根等于本身的數(shù)只有0

2.(2022秋?江都區(qū)期中)估計(jì)5-遍的值在()

A.2到3之間B.3到4之間C.4到5之間D.5到6之間

3.(2022秋?棲霞區(qū)校級(jí)月考)在七年上冊(cè)的《數(shù)學(xué)實(shí)驗(yàn)手冊(cè)》有一節(jié)關(guān)于尋找無理數(shù)的實(shí)驗(yàn).如圖,直徑

為單位1的圓從數(shù)軸上表示1的點(diǎn)沿著數(shù)軸無滑動(dòng)地逆時(shí)針滾動(dòng)一周到達(dá)A點(diǎn),則此時(shí)A點(diǎn)表示的數(shù)是

()

A.n+lB.-71-1C.-ll+lD.71-1

4.(2022?雨花臺(tái)區(qū)校級(jí)模擬)M+a的小數(shù)部分是(注:[川表示不超過〃的最大整數(shù))()

A.V2+V3-2B.V2+V3-3C.4-V2-V3D.[72+V31-2

5.(2021春?啟東市校級(jí)月考)如果當(dāng)2.37。1.333,%23.7—2.872,那么知2370約等于()

A.28.72B.0.2872C.13.33D.0.1333

6.(2022秋?崇川區(qū)校級(jí)月考)平面直角坐標(biāo)系中,。為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(-5,1),將OA繞原

點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)90°得OB,則點(diǎn)B的坐標(biāo)為()

A.(-5,1)B.(-1,-5)C.(-5,-1)D.(-1,5)

7.(2022?建鄴區(qū)一模)在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(-2,3),將點(diǎn)A繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得

到點(diǎn)艮若點(diǎn)2的坐標(biāo)是(5,-1),則點(diǎn)C的坐標(biāo)是()

A.(-0.5,-2.5)B.(-0.25,-2)

C.(0,-1.75)D.(0,-2.75)

8.(2022春?張家港市期中)如圖,在中,頂點(diǎn)A的坐標(biāo)(3,4),底邊02在x軸上.將

△A08繞點(diǎn)8按順時(shí)針方向旋轉(zhuǎn)一定角度后得△AO氏點(diǎn)A的對(duì)應(yīng)點(diǎn)W在x軸上,則點(diǎn)。,的坐標(biāo)為()

A.修,卷B.管,*C爸,呼)D.蜜,跖)

9.(2022秋?高郵市期中)如圖,點(diǎn)P是/54c平分線A。上的一點(diǎn),AC=9,^B=^,尸8=2,則PC的長

不可能是()

C.5D.6

10.(2022秋?常州期中)如圖,/XABC的面積為12cm2,AP垂直于/A8C的平分線8尸于P,則△PBC的

面積為()

C.6c,/D.5cm2

11.(2022秋?大豐區(qū)期中)在如圖所示的3X3網(wǎng)格中,△ABC是格點(diǎn)三角形(即頂點(diǎn)恰好是網(wǎng)格線的交點(diǎn)),

則與△ABC有一條公共邊且全等(不含△A2C)的所有格點(diǎn)三角形的個(gè)數(shù)是()

C.2個(gè)D.1個(gè)

12.(2022秋?江都區(qū)期中)根據(jù)下列已知條件,能畫出唯一的△ABC的是()

A.ZC=90°,AB=6B.AB=4,BC=3,ZA=30°

C.ZA=60°,ZB=45°,AB=4D.AB=3,BC=4,CA=8

13.(2022秋?徐州期中)如圖,在四邊形ABCD中,對(duì)角線BD所在的直線是其對(duì)稱軸,點(diǎn)P是直線BD

上的點(diǎn),下列判斷錯(cuò)誤的是()

A.AD^CDB./DAP=/DCPC.AP=BCD./ABP=/CBP

14.(2022秋?江陰市期中)已知等腰三角形一腰上的高線與另一腰的夾角為60°,那么這個(gè)等腰三角形的

頂角等于()

A.15°或75°B.30°C.150°D.150°或30°

15.(2022秋?姑蘇區(qū)校級(jí)期中)蘇州素有“園林之城”美譽(yù),以拙政園、留園為代表的蘇州園林“咫尺之

內(nèi)再造乾坤”,是中華園林文化的翹楚和驕傲.如圖,某園林中一亭子的頂端可看作等腰△ABC,其中

AB^AC,若。是邊上的一點(diǎn),則下列條件不能說明是△ABC角平分線的是()

A.點(diǎn)。到AB,AC的距離相等B.ZADB=ZADC

C.BD=CDD.AD^—BC

2

16.(2021秋?儀征市期中)如圖,在RtaABC中,NB=90°,AB=8,BC=6,延長至E,使得CE

=BC,將△ABC沿AC翻折,使點(diǎn)B落點(diǎn)。處,連接。E,則。E的長為()

2432

~5~~5~

17.(2021秋?東臺(tái)市期中)如圖,從AABC內(nèi)一點(diǎn)。出發(fā),把△ABC剪成三個(gè)三角形(如圖1),邊AB,

BC,AC放在同一直線上,點(diǎn)。都落在直線上(如圖2),直線MN〃AC,則點(diǎn)。是△ABC的()

B.三條高的交點(diǎn)

C.三條中線的交點(diǎn)D.三邊中垂線的交點(diǎn)

18.(2022?達(dá)拉特旗一模)如圖,三角形紙片A8C,點(diǎn)。是8C邊上一點(diǎn),連接A。,把△A3。沿著翻

折,得至DE與AC交于點(diǎn)G,連接BE交于點(diǎn)?若DG=GE,AF=6,BF=4,△AOG的

面積為8,則點(diǎn)F到BC的距離為()

A.遮B.MC.MD.嶇

5553

19.(2022秋?錫山區(qū)期中)如圖,/尸。。=90°,動(dòng)點(diǎn)A和C分別在射線OP、0Q上運(yùn)動(dòng),且AC=4a〃,

作8CLLAC,且BC=law.在運(yùn)動(dòng)過程中,。8的最大距離是()

A.5cmB.(V5+2)cmC.cmD.3cm

20.(2022秋?惠山區(qū)期中)如圖,鈍角△A3C中,AC=4fBC=5,AB=1,過三角形一個(gè)頂點(diǎn)的一條直線

可將△ABC分成兩個(gè)三角形.若分成的兩個(gè)三角形中有一個(gè)三角形為等腰三角形,則這樣的直線有()

條.

A.5B.6C.7D.8

21.(2022秋?江陰市期中)如圖,△ABC中,AB=AC,E為AB的中點(diǎn),BDLAC,若DE=5,BD=8,

則CD的長為()

C.5D.6

22.(2022春?海安市期中)《九章算術(shù)》中記載了一個(gè)“折竹抵地”問題:今有竹高一丈,末折抵地,去本

三尺,問折者高幾何?題意是:一根竹子原高1丈(1丈=10尺),中部有一處折斷,竹梢觸地面處離竹

根3尺,試問折斷處離地面多高?設(shè)折斷處離地面的高度為x尺,則可列方程為()

A.X2-3=(10口)2B./T2=(10士)2

C.?+3=(10—2D.A32=(IO^C)2

23.(2019春?崇川區(qū)期中)如圖,函數(shù)yi=-2尤和”=3+3的圖象相交于點(diǎn)A(相,2),則關(guān)于尤的不等

24.(2021秋?興化市校級(jí)月考)已知:如圖,平面直角坐標(biāo)系xOy中,B(0,1),A、C

分別在尤軸的正負(fù)半軸上.過點(diǎn)C的直線繞點(diǎn)C旋轉(zhuǎn),交y軸于點(diǎn)交線段A8于點(diǎn)E.若△OCD與

的面積相等,求點(diǎn)。的坐標(biāo)為()

A.(0,工)B.(0,工)C.(0,3)D.(0,2)

32

25.(2022春?海安市期中)甲、乙兩人在一條400加長的直線跑道上同起點(diǎn)、同終點(diǎn)、同方向勻速跑步,

先到終點(diǎn)的人原地休息.已知甲先出發(fā)3s,在跑步過程中,甲、乙兩人間的距離y(切)與乙出發(fā)的時(shí)間

尤(s)之間的函數(shù)關(guān)系如圖所示,有下列結(jié)論:①乙的速度為5m/s;②離開起點(diǎn)后,甲、乙兩人第一次

相遇時(shí),距離起點(diǎn)12/77;③甲、乙兩人之間的距離超過32根的時(shí)間范圍是44Vx<89;④乙到達(dá)終點(diǎn)時(shí),

甲距離終點(diǎn)還有68匹其中正確的個(gè)數(shù)是()

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

26.(2022?泰興市一模)過點(diǎn)(-1,2)的直線(?tW0)不經(jīng)過第三象限,若p=3m-n,則p的

范圍是()

A.-10WpW-2B.-10C.-6WpW-2D.-6Wp<-2

27.(2022?鼓樓區(qū)一模)甲乙兩地相距8歷〃,如圖表示往返于兩地的公交車離甲地的距離y(單位:km)與

從早晨7:00開始經(jīng)過的時(shí)間無(單位:min)之間的關(guān)系.小明早晨7點(diǎn)從甲地出發(fā),勻速跑步去乙地,

若他在中途與迎面而來的公交車相遇3次,被同向行駛的公交車超越2次,則小明的速度可能是()

C.0.l2.km/minD.0.1km/min

28.(2022春?崇川區(qū)校級(jí)月考)甲、乙兩車分別從A、B兩地同時(shí)出發(fā),沿同一條公路相向而行,相遇時(shí)

甲、乙所走路程的比為2:3,甲、乙兩車離A8中點(diǎn)C的路程y(千米)與甲車出發(fā)時(shí)間/(時(shí))的關(guān)系

圖象如圖所示,則下列說法不正確的是(

2

C.b的值為150

D.當(dāng)甲、乙車相距30千米時(shí),甲行走了或12/7

55

29.(2022?天寧區(qū)模擬)記實(shí)數(shù)xi,X2,…,初中的最小數(shù)為加〃{xi,%2,…,物},例如加〃{-1,1,2)

=-L則函數(shù)產(chǎn)加〃{2x-1,x,4-x}的圖象大致為()

c.

30.(2020秋?常州期末)周末,小明騎自行車從家里出發(fā)去游玩.從家出發(fā)1小時(shí)后到達(dá)迪諾水鎮(zhèn),游玩

一段時(shí)間后按原速前往萬達(dá)廣場.小明離家1小時(shí)50分鐘后,媽媽駕車沿相同路線前往萬達(dá)廣場.媽媽

出發(fā)25分鐘時(shí),恰好在萬達(dá)廣場門口追上小明.如圖是他們離家的路程y(km)與小明離家時(shí)間無(/?)

的函數(shù)圖象,則下列說法中正確的是()

A.小明在迪諾水鎮(zhèn)游玩球后,經(jīng)過應(yīng)〃到達(dá)萬達(dá)廣場

12

B.小明的速度是20淅//?,媽媽的速度是606〃?

C.萬達(dá)廣場離小明家26碗

D.點(diǎn)C的坐標(biāo)為(毀,25)

12

2022-2023學(xué)年八年級(jí)數(shù)學(xué)上學(xué)期復(fù)習(xí)備考高分秘籍【蘇科版】

專題6.1小題易丟分期末考前必做選擇30題(提升版)

一.選擇題(共30小題)

1.(2022秋?鹽都區(qū)期中)下列說法正確的是()

A.9的平方根3

B.V16=±4

C.-9沒有立方根

D.平方根等于本身的數(shù)只有0

【分析】利用平方根,算術(shù)平方根,以及立方根性質(zhì)判斷即可.

【解析】A、9的平方根是3和-3,不符合題意;

B、A/16=4,不符合題意;

C、-9的立方根是-加,不符合題意;

。、平方根等于本身的數(shù)只有0,符合題意.

故選:D.

2.(2022秋?江都區(qū)期中)估計(jì)5-五的值在()

A.2到3之間B.3到4之間C.4到5之間D.5到6之間

【分析】根據(jù)求平方和不等式的性質(zhì)進(jìn)行求算.

【解析】VI<73<2,

?.-2<-V3<-b

A3<5-V3<4,

故選:B.

3.(2022秋?棲霞區(qū)校級(jí)月考)在七年上冊(cè)的《數(shù)學(xué)實(shí)驗(yàn)手冊(cè)》有一節(jié)關(guān)于尋找無理數(shù)的實(shí)

驗(yàn).如圖,直徑為單位1的圓從數(shù)軸上表示1的點(diǎn)沿著數(shù)軸無滑動(dòng)地逆時(shí)針滾動(dòng)一周到

達(dá)A點(diǎn),則此時(shí)A點(diǎn)表示的數(shù)是()

【分析】先計(jì)算出圓的周長,然后用1減去圓的周長,從而得到A點(diǎn)表示的數(shù).

【解析】???圓的周長為

AA點(diǎn)表示的數(shù)為1-TT.

故選:C.

4.(2022?雨花臺(tái)區(qū)校級(jí)模擬)加+4的小數(shù)部分是(注:團(tuán)]表示不超過n的最大整數(shù))

()

A.V2+V3-2B.V2+V3-3C.4-V2-V3D.[V2+V3]-2

【分析】根據(jù)算術(shù)平方根的性質(zhì)(被開方數(shù)越大,則其算術(shù)平方根越大)解決此題.

【解析】Vl<1.96<2<2,89<3<4,

A1<L4<V2<V2789<V3<2.

/.1.4<V2<1.7<V3<2.

:.如避的小數(shù)部分是加+V3-3.

故選:B.

5.(2021春?啟東市校級(jí)月考)如果吃市F.333,強(qiáng)萬心2.872,那么強(qiáng)力約等于

()

A.28.72B.0.2872C.13.33D.0.1333

【分析】根據(jù)立方根,即可解答.

【解析】:我市'-1333,

句2370=%2.37X100021333X10=13.33.

故選:C.

6.(2022秋?崇川區(qū)校級(jí)月考)平面直角坐標(biāo)系中,。為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(-5,1),

將OA繞原點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)90°得OB,則點(diǎn)8的坐標(biāo)為()

A.(-5,1)B.(-1,-5)C.(-5,-1)D.(-1,5)

【分析】利用旋轉(zhuǎn)變換的性質(zhì),正確作出圖形可得結(jié)論.

【解析】如圖,B(-1,-5).

故選:B.

7.(2022?建鄴區(qū)一模)在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(-2,3),將點(diǎn)A繞點(diǎn)C順

時(shí)針旋轉(zhuǎn)90°得到點(diǎn)艮若點(diǎn)B的坐標(biāo)是(5,-1),則點(diǎn)C的坐標(biāo)是()

A.(-0.5,-2.5)B.(-0.25,-2)

C.(0,-1.75)D.(0,-2.75)

【分析】如圖,設(shè)AB的中點(diǎn)為。,過點(diǎn)Z作ANLx軸于點(diǎn)N,過點(diǎn)。作。KLAN于點(diǎn)

K,過點(diǎn)C作CTLQK于T,利用全等三角形的性質(zhì)求解即可.

【解析】如圖,設(shè)AB的中點(diǎn)為Q,

:.Q(1.5,1),

過點(diǎn)Z作AN±x軸于點(diǎn)N,過點(diǎn)。作QK上AN于點(diǎn)K,過點(diǎn)C作CT1.QK于T,

貝ijK(-2,1)AK=2,QK=3.5,

:/AKQ=/CT2=NAQC=90°,

AZAQK+ZCQT^90°,ZCQT+ZTCQ=9Q°,

:.ZAQK^ZTCQ,

在△AKQ和△QTC中,

.?.△AKQ之△QTC(AAS),

:.QT=AK=2,CT=QK=3.5,

:.C(-0.5,-2.5)

故選:A.

8.(2022春?張家港市期中)如圖,在△498中,04=A8,頂點(diǎn)A的坐標(biāo)(3,4),底邊

。3在x軸上.將△A02繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)一定角度后得△403,點(diǎn)A的對(duì)應(yīng)點(diǎn)

4在x軸上,則點(diǎn)。'的坐標(biāo)為()

A.(壁,建)B.(竺西)C.(空,D.(里2^5)

5555335

【分析】過點(diǎn)4作AGLOB于G,O7/J_O8于H,設(shè)則A月=5-x,由勾股定

理得:62-?=52-(5-尤)2,求出的長,從而得出點(diǎn)0,的橫坐標(biāo),再利用等積法

求。歸的長即可.

【解析】過點(diǎn)A作AG_L。8于G,。歸,08于H,

???點(diǎn)A的坐標(biāo)(3,4),

???0G=3,AG=4,

由勾股定理得OA=5,

:.BG=OG=3,AB=OA=5f

設(shè)BH=x,則AH=5-羽

由勾股定理得:62-X2=52-(5-X)2,

解得尤=歿,

5

0H=OB+BH=6+況=絲,

55

S^OAB=S^O'A'Bf

:.OBXAG=BA'XO'H,

???6X4=5XOH,

5

.?.點(diǎn)o(壁,建),

55

故選:A.

9.(2022秋?高郵市期中)如圖,點(diǎn)P是/BAC平分線A。上的一點(diǎn),AC=9,AB=4,PB

=2,則PC的長不可能是()

A.3B.4C.5D.6

【分析】在AC上取AE=AB=4,然后證明△AEP四△ABP,根據(jù)全等三角形對(duì)應(yīng)邊相等

得到PE=PB=2,再根據(jù)三角形的任意兩邊之差小于第三邊即可求解.

【解析】在AC上截取AE=AB=4,連接PE,

:AC=9,

:.CE=AC-AE=9-4=5,

:點(diǎn)P是ZBAC平分線AO上的一點(diǎn),

:.ZCAD=ZBAD,

在△?!2£1和△APB中,

,AE=AB

,ZCAP=ZBAD>

AP=AP

.'.△APE會(huì)/\APB(SAS),

:.PE=PB=2,

V5-2<PC<5+2,

解得3<PC<7,

.,.PC不可能為3,

故選:A.

10.(2022秋?常州期中)如圖,△ABC的面積為12cMi2,4尸垂直于/ABC的平分線BP于

P,則APBC的面積為()

【分析】延長AP交BC于點(diǎn)根據(jù)角平分線的定義可得根據(jù)垂直定

義可得N8B4=N2尸£>=90°,然后利用A&4可證△BAP也△2。尸,從而可得

進(jìn)而可得的面積=的面積,AAPC的面積=4Z)PC的面積,最后根據(jù)^

PBC的面積=工2\42。的面積,進(jìn)行計(jì)算即可解答.

2

【解析】延長AP交BC于點(diǎn),

ZABP=ZDBP,

'CBPLAP,

:.ZBPA=ZBPD=9Q°,

<BP=BP,

:.△BAPWXBDP(ASA),

:.AP=PD,

;.AABP的面積=△&)2的面積,AAPC的面積=△。PC的面積,

「△ABC的面積為12cm2,

APBC的面積=/\2尸。的面積+/XDCP的面積

=AAABC的面積

2

=Axi2

2

=6(cm2),

故選:C.

11.(2022秋?大豐區(qū)期中)在如圖所示的3X3網(wǎng)格中,△ABC是格點(diǎn)三角形(即頂點(diǎn)恰好

是網(wǎng)格線的交點(diǎn)),則與△ABC有一條公共邊且全等(不含△ABC)的所有格點(diǎn)三角形的

個(gè)數(shù)是()

【分析】根據(jù)全等三角形的定義畫出圖形,即可判斷.

【解析】如圖,觀察圖象可知滿足條件的三角形有4個(gè).

故選:A.

12.(2022秋?江都區(qū)期中)根據(jù)下列已知條件,能畫出唯一的AABC的是()

A.ZC=90°,AB=6B.AB=4,BC=3,ZA=30°

C.ZA=60°,ZB=45°,AB=4D.AB=3,BC=4,CA=S

【分析】根據(jù)全等三角形的三邊關(guān)系理逐個(gè)判斷即可.

【解析】A.如圖RtAACB和RtAADB的斜邊都是A2,但是兩三角形不一定全等,故

本選項(xiàng)不符合題意;

B.AB=4,BC=3,/A=30°,不符合全等三角形的判定定理,不能畫出唯一的三角形,

故本選項(xiàng)不符合題意;

C.ZA=60°,ZB=45°,AB=4,符合全等三角形的判定定理ASA,能畫出唯一的三

角形,故本選項(xiàng)符合題意;

D.3+4<8,不符合三角形的三邊關(guān)系定理,不能畫出三角形,故本選項(xiàng)不符合題意;

故選:C.

13.(2022秋?徐州期中)如圖,在四邊形4BC。中,對(duì)角線8。所在的直線是其對(duì)稱軸,

點(diǎn)尸是直線BD上的點(diǎn),下列判斷錯(cuò)誤的是()

A.AD=CDB.ZDAP=ZDCPC.AP=BCD.ZABP=ZCBP

【分析】利用軸對(duì)稱變換的性質(zhì)解決問題即可.

【解析】???四邊形A8CD是對(duì)稱軸,

:.AAPD烏ACPD,4ABD咨/XCBD,

:.AD=CD,ZDAP=ZDCP,ZABP=ZCBP,

故選項(xiàng)A,B,。正確,

故選:C.

14.(2022秋?江陰市期中)已知等腰三角形一腰上的高線與另一腰的夾角為60°,那么這

個(gè)等腰三角形的頂角等于()

A.15°或75°B.30°C.150°D.150°或30°

【分析】方法1:首先根據(jù)題意畫出圖形,然后分別從銳角三角形與鈍角三角形分析求解

即可求得答案.

方法2:讀到此題我們首先想到等腰三角形分為銳角、直角、鈍角等腰三角形,當(dāng)為等腰

直角三角形時(shí)不可能出現(xiàn)題中所說情況,所以舍去不計(jì),我們可以通過畫圖來討論剩余

兩種情況.

【解析】方法1:根據(jù)題意得:AB=AC,BDLAC,

如圖(1),ZABD=60°,

則乙4=30°;

如圖(2),ZABD=6Q°,

AZBAZ)=30°,

AZBAC=180°-30°=150°.

故這個(gè)等腰三角形的頂角等于30°或150°.

方法2:①當(dāng)為銳角三角形時(shí)可以畫圖,

高與左邊腰成60°夾角,由三角形內(nèi)角和為180°可得,頂角為180°-90°-60°=

30°,

②當(dāng)為鈍角三角形時(shí)可畫圖,

此時(shí)垂足落到三角形外面,因?yàn)槿切蝺?nèi)角和為180。,

由圖可以看出等腰三角形的頂角的補(bǔ)角為30°,

.?.三角形的頂角為180°-30°=150°.

15.(2022秋?姑蘇區(qū)校級(jí)期中)蘇州素有“園林之城”美譽(yù),以拙政園、留園為代表的蘇

州園林“咫尺之內(nèi)再造乾坤”,是中華園林文化的翹楚和驕傲.如圖,某園林中一亭子的

頂端可看作等腰△ABC,其中AB=AC,若。是8c邊上的一點(diǎn),則下列條件不能說明

AO是△ABC角平分線的是()

A.點(diǎn)。到AB,AC的距離相等B.ZADB=ZADC

C.BD=CDD.AD=—BC

2

【分析】根據(jù)到角兩邊距離相等的點(diǎn)在角的平分線上即可判斷選項(xiàng)4根據(jù)等腰三角形

的性質(zhì)(三線合一)即可判斷選項(xiàng)8、選項(xiàng)C,選項(xiàng)D

【解析】A.:點(diǎn)。到A3、AC的距離相等,

.?.AD是NBAC的角平分線,故本選項(xiàng)不符合題意;

B.VZADB^ZADC,ZADC+ZADB^1SQ°,

ZADB=ZADC=90°,

即AD±BC,

\"AB=AC,

:.AD是NA4c的角平分線,故本選項(xiàng)不符合題意;

C.,:BD=CD,AB^AC,

是NBAC的角平分線,故本選項(xiàng)不符合題意;

D.8c不能推出是△ABC的角平分線,故本選項(xiàng)符合題意;

2

故選:D.

16.(2021秋?儀征市期中)如圖,在RtZkABC中,ZB=90°,AB=8,BC=6,延長BC

至E,使得CE=BC,將△ABC沿AC翻折,使點(diǎn)2落點(diǎn)。處,連接。E,則。E的長為

()

AA.18RD.24rU.32nU.36

5555

【分析】連接8。交AC于點(diǎn)R由折疊的性質(zhì)得出4B=AO,ZBAC=ZDAC,由勾股

定理求出CF的長,則可由中位線定理求出。E的長.

【解析】連接BD交AC于點(diǎn)F,

:將AABC沿AC翻折,使點(diǎn)8落點(diǎn)。處,

:.AB=AD,NBAC=NDAC,

:.BF=DF,NBFC=9Q°,

:4B=8,BC=6,

;.AC=、AB2+BC2==1°'

設(shè)CP=尤,則4/=10-尤,

?ZAB2-AF1=BF1,BC1-CF2=BF2,

82-(10-x)2=62-x2,

**.x=18

5

5

:CE=BC,

:.CF^—DE,

2

:.DE=—.

5

故選:D.

17.(2021秋?東臺(tái)市期中)如圖,從△ABC內(nèi)一點(diǎn)。出發(fā),把△ABC剪成三個(gè)三角形(如

圖1),邊AB,BC,AC放在同一直線上,點(diǎn)。都落在直線MN上(如圖2),直線

//AC,則點(diǎn)。是△ABC的()

C

圖1圖2

A.三條角平分線的交點(diǎn)B.三條高的交點(diǎn)

C.三條中線的交點(diǎn)D.三邊中垂線的交點(diǎn)

【分析】利用平行線間的距離處處相等,可知點(diǎn)。到BC、AC、A8的距離相等,然后可

作出判斷.

【解析】如圖1,過點(diǎn)。作0DL2C于OELAC^-E,。尸,AB于尸.

':MN//AB,

OD=OE=OF(夾在平行線間的距離處處相等).

如圖2:過點(diǎn)。作?!?gt;'_LBC于。,作OE_LAC于E,作O/LAB于F.

由題意可知:OD=OD',OE=OE,OF=OF,

:.OD'=OE=OF,

...圖2中的點(diǎn)。是三角形三個(gè)內(nèi)角的平分線的交點(diǎn),

故選:A.

18.(2022?達(dá)拉特旗一模)如圖,三角形紙片48C,點(diǎn)。是8C邊上一點(diǎn),連接A。,把4

A8D沿著AO翻折,得到DE與AC交于點(diǎn)、G,連接BE交于點(diǎn)尸.若。G=

GE,AF=6,BF=4,ZVIOG的面積為8,則點(diǎn)尸到BC的距離為()

A

E

BD

AaR275r475n473

5553

【分析】先求出△42。的面積,根據(jù)三角形的面積公式求出。R設(shè)點(diǎn)/到8。的距離為

h,根據(jù)1求出2。即可解決問題.

22

【解析】?:DG=GE,

??S^ADG=SAAEG~8,

???S/\ADE=16,

由翻折可知,AADB^AADE,BELAD,

AS^ABD=S/^ADE=16,NBFD=9U°,

:.1.<AF+DF>BF=16,

2

,\A.(6+DF)X4=16,

2

:.DF=2,

DB=7BF2+DF2==2遙,

設(shè)點(diǎn)P到BD的距離為h,則有1?2。?/7=2?2尸£)尸,

22

;.2灰〃=4*2,

心生叵,

5

故選:C.

19.(2022秋?錫山區(qū)期中)如圖,/尸。。=90°,動(dòng)點(diǎn)A和C分別在射線。尸、0。上運(yùn)動(dòng),

且AC=4cm,作BCJ_AC,且BC=lc7w.在運(yùn)動(dòng)過程中,08的最大距離是()

D.3cm

【分析】取AC的中點(diǎn)O,連接。。、BD,貝UO8W3O+。。,當(dāng)0、D、8三點(diǎn)共線時(shí),

。2取得最大值,由直角三角形斜邊上的中線性質(zhì)得OD=」AC=CO=2CMJ,再由勾股定

2

理得代。相,即可得出結(jié)論.

【解析】如圖,取AC的中點(diǎn)。,連接。£)、BD,

,:OBWBD+OD,

...當(dāng)。、D、2三點(diǎn)共線時(shí),。8取得最大值為BD+。。,

':ZPOQ=90°,〃是AC的中點(diǎn),AC=4cm,

:.OD=—AC=CD=2cm,

2

在RtaBCO中,由勾股定理得:BD=7BC2-*CD2=Vl2+22=^5(cm),

.?.在運(yùn)動(dòng)過程中,。8的最大距離為BD+OO=(V5+2)cm,

20.(2022秋?惠山區(qū)期中)如圖,鈍角△ABC中,AC=4,BC=5,AB=1,過三角形一個(gè)

頂點(diǎn)的一條直線可將△ABC分成兩個(gè)三角形.若分成的兩個(gè)三角形中有一個(gè)三角形為等

腰三角形,則這樣的直線有()條.

【分析】分別以A、B、C為等腰三角形的頂點(diǎn),可畫出直線,再分別以AB、AC、BC為

底的等腰三角形,可畫出直線,即可得出結(jié)論.

滿足條件的直線有4條;

分別以A3、AC、BC為底的等腰三角形有3個(gè),

滿足條件的直線有3條,

綜上可知滿足條件的直線共有7條,

故選:C.

21.(2022秋?江陰市期中)如圖,△ABC中,AB=AC,E為A8的中點(diǎn),BD1AC,若DE

=5,BD=8,則CD的長為()

【分析】由直角三角形斜邊上的中線性質(zhì)得AB=2OE=10,則AC=AB=10,再由勾股

定理得AD=6,即可解決問題.

【解析】,:BDLAC,

:.ZADB=9Q°,

:點(diǎn)E為48的中點(diǎn),

.".AB=2DE=2X5=10,

:.AC^AB=10,

在中,由勾股定理得:^=VAB2-BD2=V102-82=6,

CD=AC-AD=10-6=4,

故選:B.

22.(2022春?海安市期中)《九章算術(shù)》中記載了一個(gè)“折竹抵地”問題:今有竹高一丈,

末折抵地,去本三尺,問折者高幾何?題意是:一根竹子原高1丈(1丈=10尺),中部

有一處折斷,竹梢觸地面處離竹根3尺,試問折斷處離地面多高?設(shè)折斷處離地面的高

度為無尺,則可列方程為()

A.X2-3=2B.X2-32=(IOW)2

C./+3=(10^v)2D.X2+32=(10-rr)2

【分析】根據(jù)題意結(jié)合勾股定理列出方程即可.

【解析】設(shè)折斷處離地面x尺,

根據(jù)題意可得:?+32=(10-x)2,

故選:D.

23.(2019春?崇川區(qū)期中)如圖,函數(shù)yi=-2x和”=以+3的圖象相交于點(diǎn)A(加,2),

則關(guān)于x的不等式-2x>辦+3的解集是()

A.x>2B.x<2C.x>-1D.x<-1

【分析】首先利用待定系數(shù)法求出A點(diǎn)坐標(biāo),再以交點(diǎn)為分界,結(jié)合圖象寫出不等式-

2x>ax+3的解集即可.

【解析】?.,函數(shù)yi=-2x過點(diǎn)A(m,2),

-Im—2,

解得:m=-1,

(-1,2),

不等式-2尤>辦+3的解集為尤<-1.

故選:D.

24.(2021秋?興化市校級(jí)月考)已知:如圖,平面直角坐標(biāo)系xOy中,B(0,1),OB=OC

=。4,A、C分別在x軸的正負(fù)半軸上.過點(diǎn)C的直線繞點(diǎn)C旋轉(zhuǎn),交y軸于點(diǎn)。,交

線段A3于點(diǎn)E.若△08與的面積相等,求點(diǎn)。的坐標(biāo)為()

A.(0,-1)B.(0,-1)C.(0,3)D.(0,2)

32

【分析】根據(jù)42的坐標(biāo)和三角形的內(nèi)角和定理求出N0A8的度數(shù)即可;設(shè)直線A2的

解析式為了=后+乩把A、8的坐標(biāo)代入得出方程組,求出直線A3的解析式,由題意推

出三角形A02和三角形ACE的面積相等,根據(jù)面積公式求出E的縱坐標(biāo),代入直線

的解析式,求出E的橫坐標(biāo),設(shè)直線CE的解析式是:y=mx+n,利用待定系數(shù)法求出直

線EC的解析式,進(jìn)而即可求得點(diǎn)。的坐標(biāo).

【解析】":OB=OC=OA,NAO3=90°,

:.ZOAB=45°;

,:B(0,1),

AA(1,0),

設(shè)直線AB的解析式為y^kx+b.

..1k+b=0,

"lb=l'

解得,,

/.直線AB的解析式為y=-x+1;

?SACOD=SABDE,

??S^COD+S四邊形4OOE=SZ\3OE+S四邊形AOOE,

即SMCE=S^AOB,

??,點(diǎn)E在線段A3上,

???點(diǎn)E在第一象限,且連>0,

.-.AXACXJE=-IXOAXOB,

.?.Ax2Xy£=AxiXl,

22

VE=—,

2

把y=*代入直線A2的解析式得:1=-X+1,

2

設(shè)直線CE的解析式是:y=mx+n9

f-m+n=0

VC(-1,0),E(A,1)代入得:1,

22]可出=萬

解得:m=—,n=—,

33

直線CE的解析式為y=[x+』,

33

令x=0,則>=工,

3

.?.£)的坐標(biāo)為(0,—

3

故選:A.

25.(2022春?海安市期中)甲、乙兩人在一條400加長的直線跑道上同起點(diǎn)、同終點(diǎn)、同方

向勻速跑步,先到終點(diǎn)的人原地休息.已知甲先出發(fā)3s,在跑步過程中,甲、乙兩人間

的距離y(m)與乙出發(fā)的時(shí)間x(s)之間的函數(shù)關(guān)系如圖所示,有下列結(jié)論:①乙的速

度為5Ms;②離開起點(diǎn)后,甲、乙兩人第一次相遇時(shí),距離起點(diǎn)12儂③甲、乙兩人之

間的距離超過32相的時(shí)間范圍是44cx<89;④乙到達(dá)終點(diǎn)時(shí),甲距離終點(diǎn)還有68匹其

中正確的個(gè)數(shù)是()

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

【分析】由圖象可知,乙80秒到達(dá)終點(diǎn),行400米,可以求得乙的速度為乙的速度為5

米/秒,可判斷①正確;

由甲3秒行12米求得甲的速度為4米/秒,甲、乙兩人第一次相遇,可列方程12+4x=5x,

求得尤的值為12,則5X12=60,說明此時(shí)距離起點(diǎn)60米,可判斷②正確;

求出當(dāng)12W無W80和當(dāng)80〈尤W97時(shí)y與x之間的函數(shù)關(guān)系式,求出當(dāng)y=32時(shí)的x的值,

可判斷③正確;

乙到達(dá)終點(diǎn)時(shí)x=80,此時(shí)甲跑步的時(shí)間為83秒,距離為4X83=332米,甲距離終點(diǎn)

400-332=68米,可判斷④正確.

【解析】由圖象可知,乙80秒到達(dá)終點(diǎn),

.,.4004-80=5(米/秒),

乙的速度為5米/秒,

故①正確;

由圖象可知,甲3秒行12米,

.?.12+3=4(米/秒),

;?甲的速度是4米/秒,

甲、乙兩人第一次相遇,則12+4x=5x,

解得尤=12,

.,.5X12=60(米),

甲、乙兩人第一次相遇時(shí),距離起點(diǎn)60米,

故②錯(cuò)誤;

當(dāng)尤=12時(shí),兩人第一次相遇,即y=0;

當(dāng)x=80時(shí),乙行400米,甲行4X(3+80)=332(米),

.*.400-332=68(米),

此時(shí)兩人的距離是68米,

故④正確;

當(dāng)x=80時(shí),y=68,

設(shè)當(dāng)12WxW80時(shí),y^kx+b,

則(12k+b=0

180k+b=68

解得(k=l,

lb=-12

...y=x-12,

???當(dāng)y=32時(shí),x-12=32,

解得x=44;

當(dāng)乙到達(dá)終點(diǎn)時(shí),甲到達(dá)終點(diǎn)還需要68+4=17(秒),

設(shè)當(dāng)80VxW97時(shí),y=nvc-vn,

則(80m+n=68,

I97m+n=0

解得,

ln=388

??y—~4x+388,

當(dāng)y=32時(shí),-4x+388=32,

解得x=89,

???甲、乙兩人之間的距離超過32m的時(shí)間范圍是44<x<89,

故③正確.

故選:B.

26.(2022?泰興市一模)過點(diǎn)(-1,2)的直線y=mx+n(m^O)不經(jīng)過第三象限,若p

=3m-n,則p的范圍是()

A.-10WpW-2B.-10C.-6WpW-2D.-6WpV-2

【分析】根據(jù)過點(diǎn)(-1,2)的直線(加WO)不經(jīng)過第三象限,可以得到相和

幾的關(guān)系,m>〃的正負(fù)情況,再根據(jù)夕=3m-幾,即可用含根的式子表示〃和用含〃的

式子表示夕,然后即可得到相應(yīng)的不等式組,再解不等式組即可.

【解析】:過點(diǎn)(-1,2)的直線(m^O)不經(jīng)過第三象限,

-m+n—l,m<0,

?\n=2+m,m=n-2,

■:p=3m-n,

:?p=3m-(2+m)=3m-2-m=2m-2,

p=3m-九=3(n-2)-n=3n-6-n—2n-6,

?p+2p+6

22

?**〔等。,

解得-6W夕V-2,

故選:D.

27.(2022?鼓樓區(qū)一模)甲乙兩地相距8fo?,如圖表示往返于兩地的公交車離甲地的距離y

(單位:km)與從早晨7:00開始經(jīng)過的時(shí)間x(單位:機(jī)加)之間的關(guān)系.小明早晨7

點(diǎn)從甲地出發(fā),勻速跑步去乙地,若他在中途與迎面而來的公交車相遇3次,被同向行

駛的公交車超越2次,則小明的速度可能是()

C.0.12km/minD.QAkm/min

【分析】根據(jù)題意畫出小明的函數(shù)圖象,得到小明所用時(shí)間的范圍,即可求出他的速度

范圍.

【解析】???小明在中途與迎面而來的公交車相遇3次,被同向行駛的公交車超越2次.

他的函數(shù)圖象如圖在OA和OB之間,

小明所用的時(shí)間在50-60分鐘之間,

84-50=0.16,84-60^0.1333,

小明的速度在0.133-0.16之間,

故選:B.

28.(2022春?崇川區(qū)校級(jí)月考)甲、乙兩車分別從A、8兩地同時(shí)出發(fā),沿同一條公路相向

而行,相遇時(shí)甲、乙所走路程的比為2:3,甲、乙兩車離AB中點(diǎn)C的路程y(千米)

與甲車出發(fā)時(shí)間/(時(shí))的關(guān)系圖象如圖所示,則下列說法不正確的是()

y

b

Z甲

30---V-Y/

Oc2at

A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論