版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
甘肅省古浪縣二中2023-2024學年高三第一次模擬(5月)數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將函數(shù)圖象上每一點的橫坐標變?yōu)樵瓉淼?倍,再將圖像向左平移個單位長度,得到函數(shù)的圖象,則函數(shù)圖象的一個對稱中心為()A. B. C. D.2.函數(shù)的大致圖象是()A. B.C. D.3.已知復數(shù),,則()A. B. C. D.4.已知函數(shù),則下列判斷錯誤的是()A.的最小正周期為 B.的值域為C.的圖象關于直線對稱 D.的圖象關于點對稱5.下列說法正確的是()A.命題“,”的否定形式是“,”B.若平面,,,滿足,則C.隨機變量服從正態(tài)分布(),若,則D.設是實數(shù),“”是“”的充分不必要條件6.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}時,A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.?7.下列四個結論中正確的個數(shù)是(1)對于命題使得,則都有;(2)已知,則(3)已知回歸直線的斜率的估計值是2,樣本點的中心為(4,5),則回歸直線方程為;(4)“”是“”的充分不必要條件.A.1 B.2 C.3 D.48.拋物線方程為,一直線與拋物線交于兩點,其弦的中點坐標為,則直線的方程為()A. B. C. D.9.已知中,角、所對的邊分別是,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分必要條件10.若函數(shù)有且僅有一個零點,則實數(shù)的值為()A. B. C. D.11.已知下列命題:①“”的否定是“”;②已知為兩個命題,若“”為假命題,則“”為真命題;③“”是“”的充分不必要條件;④“若,則且”的逆否命題為真命題.其中真命題的序號為()A.③④ B.①② C.①③ D.②④12.設,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)已知橢圓方程為,過其下焦點作斜率存在的直線與橢圓交于兩點,為坐標原點,則面積的取值范圍是____________.14.在平面直角坐標系xOy中,己知直線與函數(shù)的圖象在y軸右側的公共點從左到右依次為,,…,若點的橫坐標為1,則點的橫坐標為________.15.已知實數(shù)滿足,則的最大值為________.16.已知單位向量的夾角為,則=_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若曲線的切線方程為,求實數(shù)的值;(2)若函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.18.(12分)已知某種細菌的適宜生長溫度為12℃~27℃,為了研究該種細菌的繁殖數(shù)量(單位:個)隨溫度(單位:℃)變化的規(guī)律,收集數(shù)據如下:溫度/℃14161820222426繁殖數(shù)量/個2530385066120218對數(shù)據進行初步處理后,得到了一些統(tǒng)計量的值,如表所示:20784.11123.8159020.5其中,.(1)請繪出關于的散點圖,并根據散點圖判斷與哪一個更適合作為該種細菌的繁殖數(shù)量關于溫度的回歸方程類型(給出判斷即可,不必說明理由);(2)根據(1)的判斷結果及表格數(shù)據,建立關于的回歸方程(結果精確到0.1);(3)當溫度為27℃時,該種細菌的繁殖數(shù)量的預報值為多少?參考公式:對于一組數(shù)據,其回歸直線的斜率和截距的最小二成估計分別為,,參考數(shù)據:.19.(12分)已知正數(shù)x,y,z滿足xyzt(t為常數(shù)),且的最小值為,求實數(shù)t的值.20.(12分)在中,角所對的邊分別為,,的面積.(1)求角C;(2)求周長的取值范圍.21.(12分)某廣告商租用了一塊如圖所示的半圓形封閉區(qū)域用于產品展示,該封閉區(qū)域由以為圓心的半圓及直徑圍成.在此區(qū)域內原有一個以為直徑、為圓心的半圓形展示區(qū),該廣告商欲在此基礎上,將其改建成一個凸四邊形的展示區(qū),其中、分別在半圓與半圓的圓弧上,且與半圓相切于點.已知長為40米,設為.(上述圖形均視作在同一平面內)(1)記四邊形的周長為,求的表達式;(2)要使改建成的展示區(qū)的面積最大,求的值.22.(10分)已知橢圓的離心率為,且過點.(Ⅰ)求橢圓的方程;(Ⅱ)設是橢圓上且不在軸上的一個動點,為坐標原點,過右焦點作的平行線交橢圓于、兩個不同的點,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據函數(shù)圖象的變換規(guī)律可得到解析式,然后將四個選項代入逐一判斷即可.【詳解】解:圖象上每一點的橫坐標變?yōu)樵瓉淼?倍,得到再將圖像向左平移個單位長度,得到函數(shù)的圖象,故選:D【點睛】考查三角函數(shù)圖象的變換規(guī)律以及其有關性質,基礎題.2、A【解析】
用排除B,C;用排除;可得正確答案.【詳解】解:當時,,,所以,故可排除B,C;當時,,故可排除D.故選:A.【點睛】本題考查了函數(shù)圖象,屬基礎題.3、B【解析】分析:利用的恒等式,將分子、分母同時乘以,化簡整理得詳解:,故選B點睛:復數(shù)問題是高考數(shù)學中的??紗栴},屬于得分題,主要考查的方面有:復數(shù)的分類、復數(shù)的幾何意義、復數(shù)的模、共軛復數(shù)以及復數(shù)的乘除運算,在運算時注意符號的正、負問題.4、D【解析】
先將函數(shù)化為,再由三角函數(shù)的性質,逐項判斷,即可得出結果.【詳解】可得對于A,的最小正周期為,故A正確;對于B,由,可得,故B正確;對于C,正弦函數(shù)對稱軸可得:解得:,當,,故C正確;對于D,正弦函數(shù)對稱中心的橫坐標為:解得:若圖象關于點對稱,則解得:,故D錯誤;故選:D.【點睛】本題考查三角恒等變換,三角函數(shù)的性質,熟記三角函數(shù)基本公式和基本性質,考查了分析能力和計算能力,屬于基礎題.5、D【解析】
由特稱命題的否定是全稱命題可判斷選項A;可能相交,可判斷B選項;利用正態(tài)分布的性質可判斷選項C;或,利用集合間的包含關系可判斷選項D.【詳解】命題“,”的否定形式是“,”,故A錯誤;,,則可能相交,故B錯誤;若,則,所以,故,所以C錯誤;由,得或,故“”是“”的充分不必要條件,D正確.故選:D.【點睛】本題考查命題的真假判斷,涉及到特稱命題的否定、面面相關的命題、正態(tài)分布、充分條件與必要條件等,是一道容易題.6、B【解析】試題分析:由集合A中的函數(shù)y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函數(shù)考點:交集及其運算.7、C【解析】
由題意,(1)中,根據全稱命題與存在性命題的關系,即可判定是正確的;(2)中,根據正態(tài)分布曲線的性質,即可判定是正確的;(3)中,由回歸直線方程的性質和直線的點斜式方程,即可判定是正確;(4)中,基本不等式和充要條件的判定方法,即可判定.【詳解】由題意,(1)中,根據全稱命題與存在性命題的關系,可知命題使得,則都有,是錯誤的;(2)中,已知,正態(tài)分布曲線的性質,可知其對稱軸的方程為,所以是正確的;(3)中,回歸直線的斜率的估計值是2,樣本點的中心為(4,5),由回歸直線方程的性質和直線的點斜式方程,可得回歸直線方程為是正確;(4)中,當時,可得成立,當時,只需滿足,所以“”是“”成立的充分不必要條件.【點睛】本題主要考查了命題的真假判定及應用,其中解答中熟記含有量詞的否定、正態(tài)分布曲線的性質、回歸直線方程的性質,以及基本不等式的應用等知識點的應用,逐項判定是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.8、A【解析】
設,,利用點差法得到,所以直線的斜率為2,又過點,再利用點斜式即可得到直線的方程.【詳解】解:設,∴,又,兩式相減得:,∴,∴,∴直線的斜率為2,又∴過點,∴直線的方程為:,即,故選:A.【點睛】本題考查直線與拋物線相交的中點弦問題,解題方法是“點差法”,即設出弦的兩端點坐標,代入拋物線方程相減后可把弦所在直線斜率與中點坐標建立關系.9、D【解析】
由大邊對大角定理結合充分條件和必要條件的定義判斷即可.【詳解】中,角、所對的邊分別是、,由大邊對大角定理知“”“”,“”“”.因此,“”是“”的充分必要條件.故選:D.【點睛】本題考查充分條件、必要條件的判斷,考查三角形的性質等基礎知識,考查邏輯推理能力,是基礎題.10、D【解析】
推導出函數(shù)的圖象關于直線對稱,由題意得出,進而可求得實數(shù)的值,并對的值進行檢驗,即可得出結果.【詳解】,則,,,所以,函數(shù)的圖象關于直線對稱.若函數(shù)的零點不為,則該函數(shù)的零點必成對出現(xiàn),不合題意.所以,,即,解得或.①當時,令,得,作出函數(shù)與函數(shù)的圖象如下圖所示:此時,函數(shù)與函數(shù)的圖象有三個交點,不合乎題意;②當時,,,當且僅當時,等號成立,則函數(shù)有且只有一個零點.綜上所述,.故選:D.【點睛】本題考查利用函數(shù)的零點個數(shù)求參數(shù),考查函數(shù)圖象對稱性的應用,解答的關鍵就是推導出,在求出參數(shù)后要對參數(shù)的值進行檢驗,考查分析問題和解決問題的能力,屬于中等題.11、B【解析】
由命題的否定,復合命題的真假,充分必要條件,四種命題的關系對每個命題進行判斷.【詳解】“”的否定是“”,正確;已知為兩個命題,若“”為假命題,則“”為真命題,正確;“”是“”的必要不充分條件,錯誤;“若,則且”是假命題,則它的逆否命題為假命題,錯誤.故選:B.【點睛】本題考查命題真假判斷,掌握四種命題的關系,復合命題的真假判斷,充分必要條件等概念是解題基礎.12、D【解析】
由不等式的性質及換底公式即可得解.【詳解】解:因為,,則,且,所以,,又,即,則,即,故選:D.【點睛】本題考查了不等式的性質及換底公式,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意,,則,得.由題意可設的方程為,,聯(lián)立方程組,消去得,恒成立,,,則,點到直線的距離為,則,又,則,當且僅當即時取等號.故面積的取值范圍是.14、1【解析】
當時,得,或,依題意可得,可求得,繼而可得答案.【詳解】因為點的橫坐標為1,即當時,,所以或,又直線與函數(shù)的圖象在軸右側的公共點從左到右依次為,,所以,故,所以函數(shù)的關系式為.當時,(1),即點的橫坐標為1,為二函數(shù)的圖象的第二個公共點.故答案為:1.【點睛】本題考查三角函數(shù)關系式的恒等變換、正弦型函數(shù)的性質的應用,主要考查學生的運算能力及思維能力,屬于中檔題.15、【解析】
作出不等式組所表示的平面區(qū)域,將目標函數(shù)看作點與可行域的點所構成的直線的斜率,當直線過時,直線的斜率取得最大值,代入點A的坐標可得答案.【詳解】畫出二元一次不等式組所表示的平面區(qū)域,如下圖所示,由得點,目標函數(shù)表示點與可行域的點所構成的直線的斜率,當直線過時,直線的斜率取得最大值,此時的最大值為.故答案為:.【點睛】本題考查求目標函數(shù)的最值,關鍵在于明確目標函數(shù)的幾何意義,屬于中檔題.16、【解析】
因為單位向量的夾角為,所以,所以==.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)或【解析】
(1)根據解析式求得導函數(shù),設切點坐標為,結合導數(shù)的幾何意義可得方程,構造函數(shù),并求得,由導函數(shù)求得有最小值,進而可知由唯一零點,即可代入求得的值;(2)將解析式代入,結合零點定義化簡并分離參數(shù)得,構造函數(shù),根據題意可知直線與曲線有兩個交點;求得并令求得極值點,列出表格判斷的單調性與極值,即可確定與有兩個交點時的取值范圍.【詳解】(1)依題意,,,設切點為,,故,故,則;令,,故當時,,當時,,故當時,函數(shù)有最小值,由于,故有唯一實數(shù)根0,即,則;(2)由,得.所以“在區(qū)間上有兩個零點”等價于“直線與曲線在有兩個交點”;由于.由,解得,.當變化時,與的變化情況如下表所示:30+0極小值極大值所以在,上單調遞減,在上單調遞增.又因為,,,,故當或時,直線與曲線在上有兩個交點,即當或時,函數(shù)在區(qū)間上有兩個零點.【點睛】本題考查了導數(shù)的幾何意義應用,由切線方程求參數(shù)值,構造函數(shù)法求參數(shù)的取值范圍,函數(shù)零點的意義及綜合應用,屬于難題.18、(1)作圖見解析;更適合(2)(3)預報值為245【解析】
(1)由散點圖即可得到答案;(2)把兩邊取自然對數(shù),得,由計算得到,再將代入可得,最終求得,即;(3)將代入中計算即可.【詳解】解:(1)繪出關于的散點圖,如圖所示:由散點圖可知,更適合作為該種細菌的繁殖數(shù)量關于的回歸方程類型;(2)把兩邊取自然對數(shù),得,即,由.∴,則關于的回歸方程為;(3)當時,計算可得;即溫度為27℃時,該種細菌的繁殖數(shù)量的預報值為245.【點睛】本題考查求非線性回歸方程及其應用的問題,考查學生數(shù)據處理能力及運算能力,是一道中檔題.19、t=1【解析】
把變形為結合基本不等式進行求解.【詳解】因為即,當且僅當,,時,上述等號成立,所以,即,又x,y,z>0,所以xyzt=1.【點睛】本題主要考查基本不等式的應用,利用基本不等式求解最值時要注意轉化為適用形式,同時要關注不等號是否成立,側重考查數(shù)學運算的核心素養(yǎng).20、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由可得到,代入,結合正弦定理可得到,再利用余弦定理可求出的值,即可求出角;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版辦公家具展會租賃與銷售合作合同3篇
- 二零二五年度武漢東湖風景區(qū)旅游開發(fā)合同3篇
- 二零二五年度藝術品共同創(chuàng)作與展覽合同2篇
- 二零二五版房屋租賃合同免責及維修保障3篇
- 二零二五版燈光照明工程設計咨詢合同2篇
- 二零二五版班組分包消防設施分包服務合同樣本3篇
- 二零二五版新媒體行業(yè)勞動合同制度及知識產權保護協(xié)議2篇
- 二零二五年空調銷售與綠色消費倡導合同3篇
- 二零二五年度鋼管模板租賃環(huán)保要求及價格評估合同3篇
- 二零二五版網絡安全威脅情報共享與預警服務合同范本3篇
- 2024年安徽省合肥市瑤海區(qū)中考語文一模試卷
- 單位車輛變更名稱的委托書
- 粉塵外協(xié)單位清理協(xié)議書
- 2023年12月首都醫(yī)科大學附屬北京中醫(yī)醫(yī)院面向應屆生招考聘用筆試近6年高頻考題難、易錯點薈萃答案帶詳解附后
- 茶室經營方案
- 軍隊文職崗位述職報告
- 小學數(shù)學六年級解方程練習300題及答案
- 電抗器噪聲控制與減振技術
- 中醫(yī)健康宣教手冊
- 2024年江蘇揚州市高郵市國有企業(yè)招聘筆試參考題庫附帶答案詳解
- 消費醫(yī)療行業(yè)報告
評論
0/150
提交評論