2024屆安徽省淮南市壽縣中學(xué)高三3月教學(xué)質(zhì)量檢查數(shù)學(xué)試題_第1頁
2024屆安徽省淮南市壽縣中學(xué)高三3月教學(xué)質(zhì)量檢查數(shù)學(xué)試題_第2頁
2024屆安徽省淮南市壽縣中學(xué)高三3月教學(xué)質(zhì)量檢查數(shù)學(xué)試題_第3頁
2024屆安徽省淮南市壽縣中學(xué)高三3月教學(xué)質(zhì)量檢查數(shù)學(xué)試題_第4頁
2024屆安徽省淮南市壽縣中學(xué)高三3月教學(xué)質(zhì)量檢查數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023屆安徽省淮南市壽縣中學(xué)高三3月教學(xué)質(zhì)量檢查數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),其圖象關(guān)于直線對(duì)稱,為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點(diǎn)()A.先向左平移個(gè)單位長度,再把所得各點(diǎn)橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變B.先向右平移個(gè)單位長度,再把所得各點(diǎn)橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變C.先向右平移個(gè)單位長度,再把所得各點(diǎn)橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變D.先向左平移個(gè)單位長度,再把所得各點(diǎn)橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變2.已知直線:()與拋物線:交于(坐標(biāo)原點(diǎn)),兩點(diǎn),直線:與拋物線交于,兩點(diǎn).若,則實(shí)數(shù)的值為()A. B. C. D.3.把函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,再將圖象向右平移個(gè)單位,那么所得圖象的一個(gè)對(duì)稱中心為()A. B. C. D.4.如圖,在正方體中,已知、、分別是線段上的點(diǎn),且.則下列直線與平面平行的是()A. B. C. D.5.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件6.已知,滿足約束條件,則的最大值為A. B. C. D.7.我國古代典籍《周易》用“卦”描述萬物的變化.每一“重卦”由從下到上排列的6個(gè)爻組成,爻分為陽爻“——”和陰爻“——”.如圖就是一重卦.在所有重卦中隨機(jī)取一重卦,則該重卦至少有2個(gè)陽爻的概率是()A. B. C. D.8.“是函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件9.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.10.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎(jiǎng),現(xiàn)甲從盒中隨機(jī)取出2張,則至少有一張有獎(jiǎng)的概率為()A. B. C. D.11.函數(shù)y=sin2x的圖象可能是A. B.C. D.12.洛書,古稱龜書,是陰陽五行術(shù)數(shù)之源,在古代傳說中有神龜出于洛水,其甲殼上心有此圖象,結(jié)構(gòu)是戴九履一,左三右七,二四為肩,六八為足,以五居中,五方白圈皆陽數(shù),四角黑點(diǎn)為陰數(shù).如圖,若從四個(gè)陰數(shù)和五個(gè)陽數(shù)中分別隨機(jī)選取1個(gè)數(shù),則其和等于11的概率是().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足約束條件,則的最小值為______.14.若函數(shù)在和上均單調(diào)遞增,則實(shí)數(shù)的取值范圍為________.15.展開式中的系數(shù)的和大于8而小于32,則______.16.若函數(shù)在區(qū)間上恰有4個(gè)不同的零點(diǎn),則正數(shù)的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在如圖所示的多面體中,平面平面,四邊形是邊長為2的菱形,四邊形為直角梯形,四邊形為平行四邊形,且,,(1)若分別為,的中點(diǎn),求證:平面;(2)若,與平面所成角的正弦值,求二面角的余弦值.18.(12分)已知函數(shù)(),是的導(dǎo)數(shù).(1)當(dāng)時(shí),令,為的導(dǎo)數(shù).證明:在區(qū)間存在唯一的極小值點(diǎn);(2)已知函數(shù)在上單調(diào)遞減,求的取值范圍.19.(12分)誠信是立身之本,道德之基,我校學(xué)生會(huì)創(chuàng)設(shè)了“誠信水站”,既便于學(xué)生用水,又推進(jìn)誠信教育,并用“”表示每周“水站誠信度”,為了便于數(shù)據(jù)分析,以四周為一周期,如表為該水站連續(xù)十二周(共三個(gè)周期)的誠信數(shù)據(jù)統(tǒng)計(jì):第一周第二周第三周第四周第一周期第二周期第三周期(Ⅰ)計(jì)算表中十二周“水站誠信度”的平均數(shù);(Ⅱ)若定義水站誠信度高于的為“高誠信度”,以下為“一般信度”則從每個(gè)周期的前兩周中隨機(jī)抽取兩周進(jìn)行調(diào)研,計(jì)算恰有兩周是“高誠信度”的概率;(Ⅲ)已知學(xué)生會(huì)分別在第一個(gè)周期的第四周末和第二個(gè)周期的第四周末各舉行了一次“以誠信為本”的主題教育活動(dòng),根據(jù)已有數(shù)據(jù),說明兩次主題教育活動(dòng)的宣傳效果,并根據(jù)已有數(shù)據(jù)陳述理由.20.(12分)已知.(1)當(dāng)時(shí),求不等式的解集;(2)若時(shí)不等式成立,求的取值范圍.21.(12分)如圖,四棱錐中,四邊形是矩形,,為正三角形,且平面平面,、分別為、的中點(diǎn).(1)證明:平面平面;(2)求二面角的余弦值.22.(10分)已知分別是橢圓的左焦點(diǎn)和右焦點(diǎn),橢圓的離心率為是橢圓上兩點(diǎn),點(diǎn)滿足.(1)求的方程;(2)若點(diǎn)在圓上,點(diǎn)為坐標(biāo)原點(diǎn),求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

由函數(shù)的圖象關(guān)于直線對(duì)稱,得,進(jìn)而得再利用圖像變換求解即可【詳解】由函數(shù)的圖象關(guān)于直線對(duì)稱,得,即,解得,所以,,故只需將函數(shù)的圖象上的所有點(diǎn)“先向左平移個(gè)單位長度,得再將橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變,得”即可.故選:D【點(diǎn)睛】本題考查三角函數(shù)的圖象與性質(zhì),考查圖像變換,考查運(yùn)算求解能力,是中檔題2.D【解析】

設(shè),,聯(lián)立直線與拋物線方程,消去、列出韋達(dá)定理,再由直線與拋物線的交點(diǎn)求出點(diǎn)坐標(biāo),最后根據(jù),得到方程,即可求出參數(shù)的值;【詳解】解:設(shè),,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故選:D【點(diǎn)睛】本題考查直線與拋物線的綜合應(yīng)用,弦長公式的應(yīng)用,屬于中檔題.3.D【解析】

試題分析:把函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的倍(縱坐標(biāo)不變),可得的圖象;再將圖象向右平移個(gè)單位,可得的圖象,那么所得圖象的一個(gè)對(duì)稱中心為,故選D.考點(diǎn):三角函數(shù)的圖象與性質(zhì).4.B【解析】

連接,使交于點(diǎn),連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可得解.【詳解】如圖,連接,使交于點(diǎn),連接、,則為的中點(diǎn),在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點(diǎn),且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.【點(diǎn)睛】本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題.5.B【解析】

根據(jù)誘導(dǎo)公式化簡再分析即可.【詳解】因?yàn)?所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B【點(diǎn)睛】本題考查充分與必要條件的判定以及誘導(dǎo)公式的運(yùn)用,屬于基礎(chǔ)題.6.D【解析】

作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價(jià)于,作直線,向上平移,易知當(dāng)直線經(jīng)過點(diǎn)時(shí)最大,所以,故選D.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.7.C【解析】

利用組合的方法求所求的事件的對(duì)立事件,即該重卦沒有陽爻或只有1個(gè)陽爻的概率,再根據(jù)兩對(duì)立事件的概率和為1求解即可.【詳解】設(shè)“該重卦至少有2個(gè)陽爻”為事件.所有“重卦”共有種;“該重卦至少有2個(gè)陽爻”的對(duì)立事件是“該重卦沒有陽爻或只有1個(gè)陽爻”,其中,沒有陽爻(即6個(gè)全部是陰爻)的情況有1種,只有1個(gè)陽爻的情況有種,故,所以該重卦至少有2個(gè)陽爻的概率是.故選:C【點(diǎn)睛】本題主要考查了對(duì)立事件概率和為1的方法求解事件概率的方法.屬于基礎(chǔ)題.8.C【解析】,令解得當(dāng),的圖像如下圖當(dāng),的圖像如下圖由上兩圖可知,是充要條件【考點(diǎn)定位】考查充分條件和必要條件的概念,以及函數(shù)圖像的畫法.9.B【解析】

列出每一次循環(huán),直到計(jì)數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點(diǎn)睛】本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.10.C【解析】

先計(jì)算出總的基本事件的個(gè)數(shù),再計(jì)算出兩張都沒獲獎(jiǎng)的個(gè)數(shù),根據(jù)古典概型的概率,求出兩張都沒有獎(jiǎng)的概率,由對(duì)立事件的概率關(guān)系,即可求解.【詳解】從5張“刮刮卡”中隨機(jī)取出2張,共有種情況,2張均沒有獎(jiǎng)的情況有(種),故所求概率為.故選:C.【點(diǎn)睛】本題考查古典概型的概率、對(duì)立事件的概率關(guān)系,意在考查數(shù)學(xué)建模、數(shù)學(xué)計(jì)算能力,屬于基礎(chǔ)題.11.D【解析】分析:先研究函數(shù)的奇偶性,再研究函數(shù)在上的符號(hào),即可判斷選擇.詳解:令,因?yàn)?,所以為奇函?shù),排除選項(xiàng)A,B;因?yàn)闀r(shí),,所以排除選項(xiàng)C,選D.點(diǎn)睛:有關(guān)函數(shù)圖象的識(shí)別問題的常見題型及解題思路:(1)由函數(shù)的定義域,判斷圖象的左、右位置,由函數(shù)的值域,判斷圖象的上、下位置;(2)由函數(shù)的單調(diào)性,判斷圖象的變化趨勢(shì);(3)由函數(shù)的奇偶性,判斷圖象的對(duì)稱性;(4)由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).12.A【解析】

基本事件總數(shù),利用列舉法求出其和等于11包含的基本事件有4個(gè),由此能求出其和等于11的概率.【詳解】解:從四個(gè)陰數(shù)和五個(gè)陽數(shù)中分別隨機(jī)選取1個(gè)數(shù),基本事件總數(shù),其和等于11包含的基本事件有:,,,,共4個(gè),其和等于的概率.故選:.【點(diǎn)睛】本題考查概率的求法,考查古典概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】

作出可行域,平移基準(zhǔn)直線到處,求得的最小值.【詳解】畫出可行域如下圖所示,由圖可知平移基準(zhǔn)直線到處時(shí),取得最小值為.故答案為:【點(diǎn)睛】本小題主要考查線性規(guī)劃求最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.14.【解析】

化簡函數(shù),求出在上的單調(diào)遞增區(qū)間,然后根據(jù)在和上均單調(diào)遞增,列出不等式求解即可.【詳解】由知,當(dāng)時(shí),在和上單調(diào)遞增,在和上均單調(diào)遞增,,

的取值范圍為:.

故答案為:.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),關(guān)鍵是根據(jù)函數(shù)的單調(diào)性列出關(guān)于m的方程組,屬中檔題.15.4【解析】

由題意可得項(xiàng)的系數(shù)與二項(xiàng)式系數(shù)是相等的,利用題意,得出不等式組,求得結(jié)果.【詳解】觀察式子可知,,故答案為:4.【點(diǎn)睛】該題考查的是有關(guān)二項(xiàng)式定理的問題,涉及到的知識(shí)點(diǎn)有展開式中項(xiàng)的系數(shù)和,屬于基礎(chǔ)題目.16.;【解析】

求出函數(shù)的零點(diǎn),讓正數(shù)零點(diǎn)從小到大排列,第三個(gè)正數(shù)零點(diǎn)落在區(qū)間上,第四個(gè)零點(diǎn)在區(qū)間外即可.【詳解】由,得,,,,∵,∴,解得.故答案為:.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),根據(jù)正弦函數(shù)性質(zhì)求出函數(shù)零點(diǎn),然后題意,把正數(shù)零點(diǎn)從小到大排列,由于0已經(jīng)是一個(gè)零點(diǎn),因此只有前3個(gè)零點(diǎn)在區(qū)間上.由此可得的不等關(guān)系,從而得出結(jié)論,本題解法屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)【解析】試題分析:(1)第(1)問,轉(zhuǎn)化成證明平面,再轉(zhuǎn)化成證明和.(2)第(2)問,先利用幾何法找到與平面所成角,再根據(jù)與平面所成角的正弦值為求出再建立空間直角坐標(biāo)系,求出二面角的余弦值.試題解析:(1)連接,因?yàn)樗倪呅螢榱庑危?因?yàn)槠矫嫫矫?,平面平面,平面,,所以平?又平面,所以.因?yàn)?,所?因?yàn)?,所以平?因?yàn)榉謩e為,的中點(diǎn),所以,所以平面(2)設(shè),由(1)得平面.由,,得,.過點(diǎn)作,與的延長線交于點(diǎn),取的中點(diǎn),連接,,如圖所示,又,所以為等邊三角形,所以,又平面平面,平面平面,平面,故平面.因?yàn)闉槠叫兴倪呅?,所以,所以平?又因?yàn)椋云矫?因?yàn)?,所以平面平?由(1),得平面,所以平面,所以.因?yàn)?,所以平面,所以是與平面所成角.因?yàn)?,,所以平面,平面,因?yàn)?,所以平面平?所以,,解得.在梯形中,易證,分別以,,的正方向?yàn)檩S,軸,軸的正方向建立空間直角坐標(biāo)系.則,,,,,,由,及,得,所以,,.設(shè)平面的一個(gè)法向量為,由得令,得m=(3,1,2)設(shè)平面的一個(gè)法向量為,由得令,得.所以又因?yàn)槎娼鞘氢g角,所以二面角的余弦值是.18.(1)見解析;(2)【解析】

(1)設(shè),,注意到在上單增,再利用零點(diǎn)存在性定理即可解決;(2)函數(shù)在上單調(diào)遞減,則在恒成立,即在上恒成立,構(gòu)造函數(shù),求導(dǎo)討論的最值即可.【詳解】(1)由已知,,所以,設(shè),,當(dāng)時(shí),單調(diào)遞增,而,,且在上圖象連續(xù)不斷.所以在上有唯一零點(diǎn),當(dāng)時(shí),;當(dāng)時(shí),;∴在單調(diào)遞減,在單調(diào)遞增,故在區(qū)間上存在唯一的極小值點(diǎn),即在區(qū)間上存在唯一的極小值點(diǎn);(2)設(shè),,,∴在單調(diào)遞增,,即,從而,因?yàn)楹瘮?shù)在上單調(diào)遞減,∴在上恒成立,令,∵,∴,在上單調(diào)遞減,,當(dāng)時(shí),,則在上單調(diào)遞減,,符合題意.當(dāng)時(shí),在上單調(diào)遞減,所以一定存在,當(dāng)時(shí),,在上單調(diào)遞增,與題意不符,舍去.綜上,的取值范圍是【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn)、不等式恒成立問題,在處理恒成立問題時(shí),通常是構(gòu)造函數(shù),轉(zhuǎn)化成函數(shù)的最值來處理,本題是一道較難的題.19.(Ⅰ);(Ⅱ);(Ⅲ)兩次活動(dòng)效果均好,理由詳見解析.【解析】

(Ⅰ)結(jié)合表中的數(shù)據(jù),代入平均數(shù)公式求解即可;(Ⅱ)設(shè)抽到“高誠信度”的事件為,則抽到“一般信度”的事件為,則隨機(jī)抽取兩周,則有兩周為“高誠信度”事件為,利用列舉法列出所有的基本事件和事件所包含的基本事件,利用古典概型概率計(jì)算公式求解即可;(Ⅲ)結(jié)合表中的數(shù)據(jù)判斷即可.【詳解】(Ⅰ)表中十二周“水站誠信度”的平均數(shù).(Ⅱ)設(shè)抽到“高誠信度”的事件為,則抽到“一般信度”的事件為,則隨機(jī)抽取兩周均為“高誠信度”事件為,總的基本事件為共15種,事件所包含的基本事件為共10種,由古典概型概率計(jì)算公式可得,.(Ⅲ)兩次活動(dòng)效果均好.理由:活動(dòng)舉辦后,“水站誠信度'由和看出,后繼一周都有提升.【點(diǎn)睛】本題考查平均數(shù)公式和古典概型概率計(jì)算公式;考查運(yùn)算求解能力;利用列舉法正確列舉出所有的基本事件是求古典概型概率的關(guān)鍵;屬于中檔題、??碱}型.20.(1);(2)【解析】分析:(1)將代入函數(shù)解析式,求得,利用零點(diǎn)分段將解析式化為,然后利用分段函數(shù),分情況討論求得不等式的解集為;(2)根據(jù)題中所給的,其中一個(gè)絕對(duì)值符號(hào)可以去掉,不等式可以化為時(shí),分情況討論即可求得結(jié)果.詳解:(1)當(dāng)時(shí),,即故不等式的解集為.(2)當(dāng)時(shí)成立等價(jià)于當(dāng)時(shí)成立.若,則當(dāng)時(shí);若,的解集為,所以,故.綜上,的取值范圍為.點(diǎn)睛:該題考查的是有關(guān)絕對(duì)值不等式的解法,以及含參的絕對(duì)值的式子在某個(gè)區(qū)間上恒成立求參數(shù)的取值范圍的問題,在解題的過程中,需要會(huì)用零點(diǎn)分段法將其化為分段函數(shù),從而將不等式轉(zhuǎn)化為多個(gè)不等式組來解決,關(guān)于第二問求參數(shù)的取值范圍時(shí),可以應(yīng)用題中所給的自變量的范圍,去掉一個(gè)絕對(duì)值符號(hào),之后進(jìn)行分類討論,求得結(jié)果.21.(1)見解析;(2)【解析】

(1)取中點(diǎn),中點(diǎn),連接,,.設(shè)交于,則為的中點(diǎn),連接.通過證明,證得平面,由此證得平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出二面角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論