![甘肅省武威市古浪縣職業(yè)技術(shù)教育中心2023-2024學(xué)年高三二模數(shù)學(xué)試題_第1頁(yè)](http://file4.renrendoc.com/view9/M00/32/35/wKhkGWc0QDGASqjEAAIbadFGQHU761.jpg)
![甘肅省武威市古浪縣職業(yè)技術(shù)教育中心2023-2024學(xué)年高三二模數(shù)學(xué)試題_第2頁(yè)](http://file4.renrendoc.com/view9/M00/32/35/wKhkGWc0QDGASqjEAAIbadFGQHU7612.jpg)
![甘肅省武威市古浪縣職業(yè)技術(shù)教育中心2023-2024學(xué)年高三二模數(shù)學(xué)試題_第3頁(yè)](http://file4.renrendoc.com/view9/M00/32/35/wKhkGWc0QDGASqjEAAIbadFGQHU7613.jpg)
![甘肅省武威市古浪縣職業(yè)技術(shù)教育中心2023-2024學(xué)年高三二模數(shù)學(xué)試題_第4頁(yè)](http://file4.renrendoc.com/view9/M00/32/35/wKhkGWc0QDGASqjEAAIbadFGQHU7614.jpg)
![甘肅省武威市古浪縣職業(yè)技術(shù)教育中心2023-2024學(xué)年高三二模數(shù)學(xué)試題_第5頁(yè)](http://file4.renrendoc.com/view9/M00/32/35/wKhkGWc0QDGASqjEAAIbadFGQHU7615.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
甘肅省武威市古浪縣職業(yè)技術(shù)教育中心2023-2024學(xué)年高三二模數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.給定下列四個(gè)命題:①若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,則這兩個(gè)平面相互平行;②若一個(gè)平面經(jīng)過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直.其中,為真命題的是()A.①和②B.②和③C.③和④D.②和④2.若數(shù)列滿足且,則使的的值為()A. B. C. D.3.已知復(fù)數(shù)滿足,其中為虛數(shù)單位,則().A. B. C. D.4.下列選項(xiàng)中,說(shuō)法正確的是()A.“”的否定是“”B.若向量滿足,則與的夾角為鈍角C.若,則D.“”是“”的必要條件5.函數(shù)的圖象在點(diǎn)處的切線為,則在軸上的截距為()A. B. C. D.6.已知函數(shù),若恒成立,則滿足條件的的個(gè)數(shù)為()A.0 B.1 C.2 D.37.給出下列三個(gè)命題:①“”的否定;②在中,“”是“”的充要條件;③將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象.其中假命題的個(gè)數(shù)是()A.0 B.1 C.2 D.38.函數(shù)的部分圖象如圖中實(shí)線所示,圖中圓與的圖象交于兩點(diǎn),且在軸上,則下列說(shuō)法中正確的是A.函數(shù)的最小正周期是B.函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱C.函數(shù)在單調(diào)遞增D.函數(shù)的圖象向右平移后關(guān)于原點(diǎn)成中心對(duì)稱9.如圖所示的莖葉圖為高三某班名學(xué)生的化學(xué)考試成績(jī),算法框圖中輸入的,,,,為莖葉圖中的學(xué)生成績(jī),則輸出的,分別是()A., B.,C., D.,10.盒中有6個(gè)小球,其中4個(gè)白球,2個(gè)黑球,從中任取個(gè)球,在取出的球中,黑球放回,白球則涂黑后放回,此時(shí)盒中黑球的個(gè)數(shù),則()A., B.,C., D.,11.羽毛球混合雙打比賽每隊(duì)由一男一女兩名運(yùn)動(dòng)員組成.某班級(jí)從名男生,,和名女生,,中各隨機(jī)選出兩名,把選出的人隨機(jī)分成兩隊(duì)進(jìn)行羽毛球混合雙打比賽,則和兩人組成一隊(duì)參加比賽的概率為()A. B. C. D.12.甲乙兩人有三個(gè)不同的學(xué)習(xí)小組,,可以參加,若每人必須參加并且僅能參加一個(gè)學(xué)習(xí)小組,則兩人參加同一個(gè)小組的概率為()A.B.C.D.二、填空題:本題共4小題,每小題5分,共20分。13.已知復(fù)數(shù)z是純虛數(shù),則實(shí)數(shù)a=_____,|z|=_____.14.我國(guó)古代名著《張丘建算經(jīng)》中記載:“今有方錐下廣二丈,高三丈,欲斬末為方亭;令上方六尺:?jiǎn)柾し綆缀危俊贝笾乱馑际牵河幸粋€(gè)四棱錐下底邊長(zhǎng)為二丈,高三丈;現(xiàn)從上面截取一段,使之成為正四棱臺(tái)狀方亭,且四棱臺(tái)的上底邊長(zhǎng)為六尺,則該正四棱臺(tái)的高為_(kāi)_______尺,體積是_______立方尺(注:1丈=10尺).15.已知雙曲線的兩條漸近線方程為,若頂點(diǎn)到漸近線的距離為1,則雙曲線方程為.16.復(fù)數(shù)(其中i為虛數(shù)單位)的共軛復(fù)數(shù)為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在中,角的對(duì)邊分別為,且滿足.(Ⅰ)求角的大?。唬á颍┤舻拿娣e為,,求和的值.18.(12分)在多面體中,四邊形是正方形,平面,,,為的中點(diǎn).(1)求證:;(2)求平面與平面所成角的正弦值.19.(12分)已知矩陣,.求矩陣;求矩陣的特征值.20.(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最小值為,正實(shí)數(shù)、滿足,求證:.21.(12分)已知函數(shù)()(1)函數(shù)在點(diǎn)處的切線方程為,求函數(shù)的極值;(2)當(dāng)時(shí),對(duì)于任意,當(dāng)時(shí),不等式恒成立,求出實(shí)數(shù)的取值范圍.22.(10分)在底面為菱形的四棱柱中,平面.(1)證明:平面;(2)求二面角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
利用線面平行和垂直,面面平行和垂直的性質(zhì)和判定定理對(duì)四個(gè)命題分別分析進(jìn)行選擇.【詳解】當(dāng)兩個(gè)平面相交時(shí),一個(gè)平面內(nèi)的兩條直線也可以平行于另一個(gè)平面,故①錯(cuò)誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯(cuò)誤;若兩個(gè)平面垂直,只有在一個(gè)平面內(nèi)與它們的交線垂直的直線才與另一個(gè)平面垂直,故④正確.綜上,真命題是②④.故選:D【點(diǎn)睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查空間想象能力,是中檔題.2、C【解析】因?yàn)?,所以是等差?shù)列,且公差,則,所以由題設(shè)可得,則,應(yīng)選答案C.3、A【解析】
先化簡(jiǎn)求出,即可求得答案.【詳解】因?yàn)椋运怨蔬x:A【點(diǎn)睛】此題考查復(fù)數(shù)的基本運(yùn)算,注意計(jì)算的準(zhǔn)確度,屬于簡(jiǎn)單題目.4、D【解析】
對(duì)于A根據(jù)命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,即可判斷出;對(duì)于B若向量滿足,則與的夾角為鈍角或平角;對(duì)于C當(dāng)m=0時(shí),滿足am2≤bm2,但是a≤b不一定成立;對(duì)于D根據(jù)元素與集合的關(guān)系即可做出判斷.【詳解】選項(xiàng)A根據(jù)命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,因此A不正確;選項(xiàng)B若向量滿足,則與的夾角為鈍角或平角,因此不正確.選項(xiàng)C當(dāng)m=0時(shí),滿足am2≤bm2,但是a≤b不一定成立,因此不正確;選項(xiàng)D若“”,則且,所以一定可以推出“”,因此“”是“”的必要條件,故正確.故選:D.【點(diǎn)睛】本題考查命題的真假判斷與應(yīng)用,涉及知識(shí)點(diǎn)有含有量詞的命題的否定、不等式性質(zhì)、向量夾角與性質(zhì)、集合性質(zhì)等,屬于簡(jiǎn)單題.5、A【解析】
求出函數(shù)在處的導(dǎo)數(shù)后可得曲線在處的切線方程,從而可求切線的縱截距.【詳解】,故,所以曲線在處的切線方程為:.令,則,故切線的縱截距為.故選:A.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義以及直線的截距,注意直線的縱截距指直線與軸交點(diǎn)的縱坐標(biāo),因此截距有正有負(fù),本題屬于基礎(chǔ)題.6、C【解析】
由不等式恒成立問(wèn)題分類討論:①當(dāng),②當(dāng),③當(dāng),考查方程的解的個(gè)數(shù),綜合①②③得解.【詳解】①當(dāng)時(shí),,滿足題意,②當(dāng)時(shí),,,,,故不恒成立,③當(dāng)時(shí),設(shè),,令,得,,得,下面考查方程的解的個(gè)數(shù),設(shè)(a),則(a)由導(dǎo)數(shù)的應(yīng)用可得:(a)在為減函數(shù),在,為增函數(shù),則(a),即有一解,又,均為增函數(shù),所以存在1個(gè)使得成立,綜合①②③得:滿足條件的的個(gè)數(shù)是2個(gè),故選:.【點(diǎn)睛】本題考查了不等式恒成立問(wèn)題及利用導(dǎo)數(shù)研究函數(shù)的解得個(gè)數(shù),重點(diǎn)考查了分類討論的數(shù)學(xué)思想方法,屬難度較大的題型.7、C【解析】
結(jié)合不等式、三角函數(shù)的性質(zhì),對(duì)三個(gè)命題逐個(gè)分析并判斷其真假,即可選出答案.【詳解】對(duì)于命題①,因?yàn)?所以“”是真命題,故其否定是假命題,即①是假命題;對(duì)于命題②,充分性:中,若,則,由余弦函數(shù)的單調(diào)性可知,,即,即可得到,即充分性成立;必要性:中,,若,結(jié)合余弦函數(shù)的單調(diào)性可知,,即,可得到,即必要性成立.故命題②正確;對(duì)于命題③,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C【點(diǎn)睛】本題考查了命題真假的判斷,考查了余弦函數(shù)單調(diào)性的應(yīng)用,考查了三角函數(shù)圖象的平移變換,考查了學(xué)生的邏輯推理能力,屬于基礎(chǔ)題.8、B【解析】
根據(jù)函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質(zhì),即可求解,得到答案.【詳解】根據(jù)給定函數(shù)的圖象,可得點(diǎn)的橫坐標(biāo)為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當(dāng)時(shí),,即函數(shù)的一個(gè)對(duì)稱中心為,即函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱.故選B.【點(diǎn)睛】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì),其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質(zhì)求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及運(yùn)算與求解能力,屬于基礎(chǔ)題.9、B【解析】
試題分析:由程序框圖可知,框圖統(tǒng)計(jì)的是成績(jī)不小于80和成績(jī)不小于60且小于80的人數(shù),由莖葉圖可知,成績(jī)不小于80的有12個(gè),成績(jī)不小于60且小于80的有26個(gè),故,.考點(diǎn):程序框圖、莖葉圖.10、C【解析】
根據(jù)古典概型概率計(jì)算公式,計(jì)算出概率并求得數(shù)學(xué)期望,由此判斷出正確選項(xiàng).【詳解】表示取出的為一個(gè)白球,所以.表示取出一個(gè)黑球,,所以.表示取出兩個(gè)球,其中一黑一白,,表示取出兩個(gè)球?yàn)楹谇?,,表示取出兩個(gè)球?yàn)榘浊?,,所?所以,.故選:C【點(diǎn)睛】本小題主要考查離散型隨機(jī)變量分布列和數(shù)學(xué)期望的計(jì)算,屬于中檔題.11、B【解析】
根據(jù)組合知識(shí),計(jì)算出選出的人分成兩隊(duì)混合雙打的總數(shù)為,然后計(jì)算和分在一組的數(shù)目為,最后簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】由題可知:分別從3名男生、3名女生中選2人:將選中2名女生平均分為兩組:將選中2名男生平均分為兩組:則選出的人分成兩隊(duì)混合雙打的總數(shù)為:和分在一組的數(shù)目為所以所求的概率為故選:B【點(diǎn)睛】本題考查排列組合的綜合應(yīng)用,對(duì)平均分組的問(wèn)題要掌握公式,比如:平均分成組,則要除以,即,審清題意,細(xì)心計(jì)算,考驗(yàn)分析能力,屬中檔題.12、A【解析】依題意,基本事件的總數(shù)有種,兩個(gè)人參加同一個(gè)小組,方法數(shù)有種,故概率為.二、填空題:本題共4小題,每小題5分,共20分。13、11【解析】
根據(jù)復(fù)數(shù)運(yùn)算法則計(jì)算復(fù)數(shù)z,根據(jù)復(fù)數(shù)的概念和模長(zhǎng)公式計(jì)算得解.【詳解】復(fù)數(shù)z,∵復(fù)數(shù)z是純虛數(shù),∴,解得a=1,∴z=i,∴|z|=1,故答案為:1,1.【點(diǎn)睛】此題考查復(fù)數(shù)的概念和模長(zhǎng)計(jì)算,根據(jù)復(fù)數(shù)是純虛數(shù)建立方程求解,計(jì)算模長(zhǎng),關(guān)鍵在于熟練掌握復(fù)數(shù)的運(yùn)算法則.14、213892【解析】
根據(jù)題意畫(huà)出圖形,利用棱錐與棱臺(tái)的結(jié)構(gòu)特征求出正四棱臺(tái)的高,再計(jì)算它的體積.【詳解】如圖所示:正四棱錐P-ABCD的下底邊長(zhǎng)為二丈,即AB=20尺,高三丈,即PO=30尺,截去一段后,得正四棱臺(tái)ABCD-A'B'C'D',且上底邊長(zhǎng)為A'B'=6尺,所以,解得,所以該正四棱臺(tái)的體積是,故答案為:21;3892.【點(diǎn)睛】本題考查了棱錐與棱臺(tái)的結(jié)構(gòu)特征與應(yīng)用問(wèn)題,也考查了棱臺(tái)的體積計(jì)算問(wèn)題,屬于中檔題.15、【解析】由已知,即,取雙曲線頂點(diǎn)及漸近線,則頂點(diǎn)到該漸近線的距離為,由題可知,所以,則所求雙曲線方程為.16、【解析】
利用復(fù)數(shù)的乘法運(yùn)算求出,再利用共軛復(fù)數(shù)的概念即可求解.【詳解】由,則.故答案為:【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算以及共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ);(Ⅱ),.【解析】
(Ⅰ)運(yùn)用正弦定理和二角和的正弦公式,化簡(jiǎn),即可求出角的大?。唬á颍┩ㄟ^(guò)面積公式和,可以求出,這樣用余弦定理可以求出,用余弦定理求出,根據(jù)同角的三角函數(shù)關(guān)系,可以求出,這樣可以求出,最后利用二角差的余弦公式求出的值.【詳解】(Ⅰ)由正弦定理可知:,已知,所以,,所以有.(Ⅱ),由余弦定理可知:,,.【點(diǎn)睛】本題考查了正弦定理、余弦定理、面積公式、二倍角公式、二角差的余弦公式以及同角的三角函數(shù)關(guān)系,考查了運(yùn)算能力.18、(1)證明見(jiàn)解析(2)【解析】
(1)首先證明,,,∴平面.即可得到平面,.(2)以為坐標(biāo)原點(diǎn),,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系,分別求出平面和平面的法向量,帶入公式求解即可.【詳解】(1)∵平面,平面,∴.又∵四邊形是正方形,∴.∵,∴平面.∵平面,∴.又∵,為的中點(diǎn),∴.∵,∴平面.∵平面,∴.(2)∵平面,,∴平面.以為坐標(biāo)原點(diǎn),,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系.如圖所示:則,,,.∴,,.設(shè)為平面的法向量,則,得,令,則.由題意知為平面的一個(gè)法向量,∴,∴平面與平面所成角的正弦值為.【點(diǎn)睛】本題第一問(wèn)考查線線垂直,先證線面垂直時(shí)解題關(guān)鍵,第二問(wèn)考查二面角,建立空間直角坐標(biāo)系是解題關(guān)鍵,屬于中檔題.19、;,.【解析】
由題意,可得,利用矩陣的知識(shí)求解即可.矩陣的特征多項(xiàng)式為,令,求出矩陣的特征值.【詳解】設(shè)矩陣,則,所以,解得,,,,所以矩陣;矩陣的特征多項(xiàng)式為,令,解得,,即矩陣的兩個(gè)特征值為,.【點(diǎn)睛】本題考查矩陣的知識(shí)點(diǎn),屬于常考題.20、(1);(2)見(jiàn)解析.【解析】
(1)分、、三種情況解不等式,綜合可得出原不等式的的解集;(2)利用絕對(duì)值三角不等式可求得函數(shù)的最小值為,進(jìn)而可得出,再將代數(shù)式與相乘,利用基本不等式求得的最小值,進(jìn)而可證得結(jié)論成立.【詳解】(1)當(dāng)時(shí),由,得,即,解得,此時(shí);當(dāng)時(shí),由,得,即,解得,此時(shí);當(dāng)時(shí),由,得,即,解得,此時(shí).綜上所述,不等式的解集為;(2),當(dāng)且僅當(dāng)時(shí)取等號(hào),所以,.所以,當(dāng)且僅當(dāng),即,時(shí)等號(hào)成立,所以.所以,即.【點(diǎn)睛】本題考查含絕對(duì)值不等式的求解,同時(shí)也考查了利用基本不等式證明不等式成立,涉及絕對(duì)值三角不等式的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.21、(1)極小值為,極大值為.(2)【解析】
(1)根據(jù)斜線的斜率即可求得參數(shù),再對(duì)函數(shù)求導(dǎo),即可求得函數(shù)的極值;(2)根據(jù)題意,對(duì)目標(biāo)式進(jìn)行變形,構(gòu)造函數(shù),根據(jù)是
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年債權(quán)管理與轉(zhuǎn)讓策劃合同樣本
- 2025年企業(yè)供應(yīng)鏈物流外包項(xiàng)目協(xié)議
- 2025年債權(quán)讓與四方合同策劃范本
- 2025年倉(cāng)庫(kù)管理員職責(zé)與待遇合同
- 2025年具有法律效力的個(gè)人投資對(duì)賭協(xié)議
- 2025年電子點(diǎn)火沼氣燈項(xiàng)目申請(qǐng)報(bào)告模范
- 2025年熱熔膠膠粉及膠粒項(xiàng)目規(guī)劃申請(qǐng)報(bào)告模范
- 2025年雙方教育合作框架協(xié)議
- 2025年冬季社會(huì)實(shí)踐活動(dòng)協(xié)議范本
- 2025年教育實(shí)踐基地聯(lián)盟發(fā)展與協(xié)作策劃協(xié)議
- 許曉峰版電機(jī)拖動(dòng)電子教案(全)課件
- 塑膠件噴油作業(yè)指導(dǎo)書(shū)
- 人員安全行為觀察管理制度
- Pt催化劑ECSA計(jì)算方法
- 汽車運(yùn)行材料ppt課件(完整版)
- GB∕T 1732-2020 漆膜耐沖擊測(cè)定法
- 我國(guó)油菜生產(chǎn)機(jī)械化技術(shù)(-119)
- 2022《化工裝置安全試車工作規(guī)范》精選ppt課件
- 吞咽障礙篩查表
- 汽車系統(tǒng)動(dòng)力學(xué)-輪胎動(dòng)力學(xué)
- 艾琳歆日內(nèi)交易2011-2月至4月份圖表
評(píng)論
0/150
提交評(píng)論