數(shù)學(xué)思維與小學(xué)數(shù)學(xué)教學(xué)_第1頁
數(shù)學(xué)思維與小學(xué)數(shù)學(xué)教學(xué)_第2頁
數(shù)學(xué)思維與小學(xué)數(shù)學(xué)教學(xué)_第3頁
數(shù)學(xué)思維與小學(xué)數(shù)學(xué)教學(xué)_第4頁
數(shù)學(xué)思維與小學(xué)數(shù)學(xué)教學(xué)_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

。以國(guó)際上的相關(guān)研究為背景,對(duì)小學(xué)數(shù)學(xué)教 ,即使是十分初等的數(shù)學(xué)內(nèi)容也同樣體現(xiàn)了一些十分重要的數(shù)學(xué)思維形式及其特征性質(zhì)的內(nèi)容一定要充分考慮數(shù)學(xué)發(fā)展進(jìn)程中人類的活動(dòng)軌跡,貼近學(xué)生熟悉的現(xiàn)實(shí)生活,不統(tǒng)數(shù)學(xué)教育嚴(yán)重脫離實(shí)際的弊病而言,這一做法是完全正確的;但是,從更為深入事實(shí)上,即使就最為初等的數(shù)學(xué)內(nèi)容而言,我們也可清楚地看到數(shù)學(xué)的抽象特例如,在幾何題材的教學(xué)中,無論是教師或?qū)W生都清楚地知道,我們的研究對(duì)象并非教師手中的那個(gè)木制三角尺,也不是在黑板上或紙上所畫的那個(gè)具體的三角形,而正整數(shù)加減法顯然具有多種不同的現(xiàn)實(shí)原型,如加法所對(duì)應(yīng)的既可能是兩個(gè)量可能是同一個(gè)量的增加性變化,同樣地,減法所對(duì)應(yīng)的既可能是兩個(gè)量的比較同一個(gè)量的減少性變化;然而,在相應(yīng)的數(shù)學(xué)表達(dá)式中所說的現(xiàn)實(shí)意義、包括不同的量(兩個(gè)加數(shù)與它們的和,或被減數(shù)、減數(shù)與它們的差),因此,從純數(shù)學(xué)的角度去分析,我們完全可以提出這樣的問題,即如何依據(jù)其中的任意兩個(gè)量去求取第三個(gè)的量化模式”綜上可見,即使就正整數(shù)的加減法此類十分初等的題材而言,就已十分清楚地體思維的一些重要特點(diǎn),特別是體現(xiàn)了在現(xiàn)實(shí)意義與純數(shù)學(xué)研究這兩者之間所存在的辯證關(guān)系。當(dāng)然,從理論的角度看,我們?cè)诖擞謶?yīng)考慮這樣的問題,即應(yīng)當(dāng)如何去認(rèn)識(shí)所說的要性,或是應(yīng)當(dāng)唯一地堅(jiān)持立足于現(xiàn)實(shí)生活由于后一問題的全面分析已經(jīng)超出了本文的范圍定程度上的分離對(duì)于學(xué)生很好地把握相應(yīng)的數(shù)量關(guān)系是十分重要的。這正是國(guó)際上的一般地說,學(xué)校中的數(shù)學(xué)學(xué)習(xí)就是對(duì)學(xué)生經(jīng)由日常生活所形成重組、擴(kuò)展和組織化的過程,這就意味著由孤立的數(shù)學(xué)事實(shí)過渡到了系統(tǒng)的然還未接受正式教導(dǎo),但所具備的數(shù)學(xué)知識(shí)卻比預(yù)料的多……他們所需要的幫助是從(學(xué)校教學(xué))活動(dòng)中組織和鞏固他們的非正規(guī)知識(shí),同時(shí)需擴(kuò)展他們這種知識(shí),使其與我們種不同的集合進(jìn)行計(jì)數(shù),也可以用同樣的數(shù)去對(duì)各種不同的量進(jìn)行度量?!M管運(yùn)算(等)所涉及的方面十分豐富,但又始終是同一個(gè)運(yùn)算──這即是借助于算法所表明的事實(shí)。作為計(jì)算者人們?nèi)菀淄浧渌婕暗臄?shù)以及但是,為了真正理解這種存在于多樣性之中的簡(jiǎn)單性,在計(jì)算的同時(shí)我們又必須能夠由算現(xiàn)實(shí)原型抽象出相應(yīng)的數(shù)學(xué)概念或問題,而且也包括了對(duì)于數(shù)量關(guān)系的純數(shù)學(xué)研究,整體結(jié)構(gòu)的廣闊途徑……情境和模型,問題與求解這些活動(dòng)作為必不可少的局部手段是重由以下關(guān)于算術(shù)思維基本形式的分析可以看出,是算術(shù)和代數(shù)中有不少概念在最初是作為一個(gè)過程得到引進(jìn)的,但最終卻又轉(zhuǎn)化成對(duì)象──對(duì)此我們不僅可以具體地研究它們的性質(zhì),也可以此為直接對(duì)象去施行進(jìn)一步的由兩個(gè)加數(shù)(被減數(shù)與減數(shù))我們就可求得相些運(yùn)算又逐漸獲得了新的意義:它們已不再僅僅被看成一個(gè)過程,而且也被認(rèn)為定的數(shù)學(xué)對(duì)象,我們可具體地去指明它們所具有的各種性質(zhì),如交換律、結(jié)合律等,從而分?jǐn)?shù)的掌握而言我們不應(yīng)停留于整數(shù)的除法這樣一種運(yùn)算,而應(yīng)將其直接看成一種數(shù),我們可以此為對(duì)象去實(shí)施加減乘除等運(yùn)算可以按照結(jié)構(gòu)的建構(gòu)來考慮,而這種建構(gòu)始終是完全開放的……當(dāng)數(shù)學(xué)實(shí)體從一個(gè)水平轉(zhuǎn)為理論研究的對(duì)象,這個(gè)過程在一直重復(fù)下去,直到我們達(dá)到了一種結(jié)構(gòu)為止,這種;(;(用思維去把握原先的視覺性程序,后者則是指將相應(yīng)的過程壓縮成更小的單元,從而就可從整體上對(duì)所說的過程作出描述或進(jìn)行反思──我們?cè)诖瞬粌H不需要實(shí)際地去實(shí)施相關(guān)的運(yùn)作,還可從更高的抽象水平對(duì)整個(gè)過程的性質(zhì)作出分析;另外,相對(duì)于前兩個(gè)階段而言變成了一個(gè)靜止的對(duì)象。容易看出,上述的分析對(duì)于我們改進(jìn)教學(xué)也具有重要的指導(dǎo)意義同一概念心理表征的不同側(cè)面,我們應(yīng)善于依據(jù)不同 ;( ,這集中地體現(xiàn)于相應(yīng)的符號(hào)表達(dá)式:它既可以代表所說的運(yùn)作過程,也可以代表經(jīng)由凝過程或概念。特殊地,數(shù)學(xué)中常常會(huì)用幾種不同的符號(hào)去表征同一個(gè)對(duì)象,從而,在這樣于數(shù)學(xué)的特殊重要性。以下再以有理數(shù)的學(xué)習(xí)為例對(duì)此作出進(jìn)一具體地說,與加減法一樣,有理數(shù)的概念也存在多種不同的解釋,如部分與整體的關(guān)系,商,算子或函數(shù),度量,等等;但是,正如人們所已普遍認(rèn)識(shí)到了的,就有理言,關(guān)鍵恰又在于不應(yīng)停留于某種特定的解釋,更不能將各種解釋看成互不相立的;而應(yīng)對(duì)有理數(shù)的各種解釋(或者說,相應(yīng)的心理建構(gòu))很好地加以整合將所有這些解釋都看成同一概念的不同側(cè)面,并能根據(jù)情況與需要在這些解釋之間靈活地作出必要的轉(zhuǎn)換造成一定的學(xué)習(xí)困難、甚至是嚴(yán)重的概念錯(cuò)誤。例如,如果局限于上述的其次,我們應(yīng)注意不同表述形式之間的相互補(bǔ)這也正是新一輪數(shù)學(xué)課程改革的一個(gè)重要特征,即突出強(qiáng)調(diào)學(xué)生的動(dòng)手實(shí)作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式……教師應(yīng)激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),幫助他們?cè)谧灾魈剿骱秃献鹘涣鞯倪^程中真正理解和掌握基本的數(shù)學(xué)括感性經(jīng)驗(yàn))構(gòu)成了數(shù)學(xué)認(rèn)識(shí)活動(dòng)的重要基礎(chǔ),合作交流顯然應(yīng)被看成學(xué)習(xí)活動(dòng)社會(huì)性質(zhì)的直接體現(xiàn)和必然要求,因此,從這樣的角度去分析,上述的主張就是完全合理的;然而,需要強(qiáng)調(diào)的是,除去對(duì)于各種學(xué)習(xí)方式與表述形式的直接肯定以外,我們應(yīng)更加重視在不同學(xué)習(xí)方式或表述形式之間所存在的重要聯(lián)系與必要互補(bǔ)。這正如美國(guó)學(xué)者萊許(圖像,書面語言、符號(hào)語言、現(xiàn)實(shí)情景等──同樣也發(fā)揮了十分重要的作用。再次,我們應(yīng)清楚地看到解題方法的多樣性及學(xué)生生活背景和思考角度不同,所使用的方法必然是多樣的,教師應(yīng)當(dāng)尊重學(xué)生的想法,化的同時(shí),我們還應(yīng)明確肯定思維優(yōu)化的必要性,這就是說,我們不應(yīng)停留于對(duì)于法在數(shù)量上的片面追求,而應(yīng)通過多種方法的比較幫助學(xué)生學(xué)會(huì)鑒別什么是較好的方法,包括如何依據(jù)不同的情況靈活地去應(yīng)用各種不同的方法。顯然,后者事實(shí)上也就從識(shí)的深化不斷發(fā)展起新的數(shù)學(xué)直覺。在筆者看來,我們應(yīng)當(dāng)從這樣的角度去理解《課和現(xiàn)象數(shù)量方面的某種敏感性,包括能對(duì)數(shù)的相對(duì)大小作出迅速、直接的判斷,以及根據(jù)需要作出迅速的估算。當(dāng)然,作為問題的另牢固地掌握相應(yīng)的數(shù)學(xué)基本知識(shí)與基本技能的重要性,特別是,在需要的時(shí)候能對(duì)客物和現(xiàn)象的數(shù)量方面作出準(zhǔn)確的刻畫和計(jì)算,并能對(duì)運(yùn)算的合理性作出適當(dāng)?shù)恼f明──顯跑不遠(yuǎn)、走不遠(yuǎn),更不能騰飛……可是你要一引進(jìn)代數(shù)方法,這些東西就都變成了不必要的、平平淡淡的。你就可以做了,而且每個(gè)人都可以做,用不著天才人物想出許個(gè)基本事實(shí),即一種重要算法的形成往往就標(biāo)志著數(shù)學(xué)的重要進(jìn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論